Uncategorized

Navigating artificial general intelligence (AGI): societal implications, ethical considerations, and governance strategies



  • (NIST), T. N. I. o. S. a. T: AI Risk Management Framework (AI RMF 1.0). Retrieved from (2023). https://www.nist.gov/system/files/documents/2024/10/07/09-24-about-the-ai-rmf-for-distro-9-25_508-edit.pdf

  • Abney, K.: Robotics, ethical theory, and metaethics: A guide for the perplexed. Robot Ethics: Ethical Social Implications Rob., 35–52. (2012)

  • Acemoglu, D., Restrepo, P.: Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 33(2), 3–30 (2019). https://doi.org/10.1257/jep.33.2.3

    Article 

    Google Scholar
     

  • Aldarondo, D., Merel, J., Marshall, J.D., Hasenclever, L., Klibaite, U., Gellis, A., Ölveczky, B.P.: A virtual rodent predicts the structure of neural activity across behaviors. Nature. (2024). https://doi.org/10.1038/s41586-024-07633-4

    Article 

    Google Scholar
     

  • AlphaCode 2 technical report

  • Ammanath, B.: How to manage AI’s energy demand — today, tomorrow and in the future. Retrieved from (2024). https://www.weforum.org/agenda/2024/04/how-to-manage-ais-energy-demand-today-tomorrow-and-in-the-future/

  • Anderson, J., Rainie, L.: Themes: The most harmful or menacing changes in digital life that are likely by 2035. In: As AI Spreads, Experts Predict the best and Worst Changes in Digital life by 2035: They have deep Concerns about People’s and Society’s Overall well-being, pp. 114–158. Pew Research Center, Washington (2023)


    Google Scholar
     

  • Andreotta, A.J., Kirkham, N., Rizzi, M.: AI, big data, and the future of consent. AI Soc. 37(4), 1715–1728 (2022). https://doi.org/10.1007/s00146-021-01262-5

    Article 

    Google Scholar
     

  • Autor, D.: Why are there still so many jobs? The history and future of workplace automation. J. Econ. Perspect. 29(3), 3–30 (2015). https://doi.org/10.1257/jep.29.3.3

    Article 

    Google Scholar
     

  • Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Kaplan, J.: Constitutional AI: Harmlessness from AI feedback. arXiv Preprint arXiv:221208073. (2022)

  • Baji, T.: GPU: the biggest key processor for AI and parallel processing. In Photomask Japan 2017: XXIV symposium on photomask and next-generation lithography mask technology (Vol. 10454, pp. 24–29). Washington: SPIE. (2017)

  • Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Faulkner, R.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261. (2018)

  • Bessen, J.: Automation and jobs: When technology boosts employment*. Economic Policy. 34, 589–626 (2019). https://doi.org/10.1093/epolic/eiaa001

    Article 

    Google Scholar
     

  • Bird, E., Fox-Skelly, J., Jenner, N., Larbey, R., Weitkamp, E., Winfield, A.: The Ethics of Artificial Intelligence: Issues and Initiatives. European Parliamentary Research Service, Brussels (2020)


    Google Scholar
     

  • Boch, A., Hohma, E., Trauth, R.: Towards an Accountability Framework for AI: Ethical and Legal Considerations. Institute for Ethics in AI, Technical University of Munich, Germany (2022)


    Google Scholar
     

  • Bostrom, N.: Superintelligence: paths, dangers, strategies. (2014)

  • Brooks, R.A.: Intelligence without reason. In: The Artificial life Route to Artificial Intelligence, pp. 25–81. Routledge (2018)

  • Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., Amodei, D.: The malicious use of artificial intelligence: forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228. (2018)

  • Brynjolfsson, E., McAfee, A.: The Second Machine age: Work, Progress, and Prosperity in a time of Brilliant Technologies. W W Norton & Co, New York, NY, US (2014a)


    Google Scholar
     

  • Brynjolfsson, E., McAfee, A.: The Second Machine age: Work, Progress, and Prosperity in a time of Brilliant Technologies. WW Norton & Company (2014b)

  • Brynjolfsson, E., Rock, D., Syverson, C.: Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. Kauffman: Large Research Projects (Topic). (2017a)

  • Brynjolfsson, E., Rock, D., Syverson, C.: Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. National Bureau of Economic Research, Cambridge (2017b)


    Google Scholar
     

  • Cabral, T.S.: Forgetful AI: AI and the right to erasure under the GDPR. Eur. Data Prot. Law Rev. 6, 378 (2020). https://doi.org/10.21552/edpl/2020/3/8

    Article 

    Google Scholar
     

  • Cazzaniga, M., Jaumotte, M.F., Li, L., Melina, M.G., Panton, A.J., Pizzinelli, C., Tavares, M.M.M.: Gen-AI: Artificial Intelligence and the Future of work. IMF, Washington (2024)

    Book 

    Google Scholar
     

  • Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P.K., Torr, P.H., Ranzato, M.A.: On tiny episodic memories in continual learning. (2019). arXiv preprint arXiv:1902.10486.

  • Chen, Q., Bridges, R.A.: Automated behavioral analysis of malware: a case study of wannacry ransomware. In 2017 16th IEEE international conference on machine learning and applications (ICMLA) (pp. 454–460). Cancun: IEEE. (2017)

  • Cox, J.G.: Reframing ethical theory, pedagogy, and legislation to bias open source AGI towards friendliness and wisdom. J. Ethics Emerg. Technol. 25(2), 39–54 (2015)

    Article 

    Google Scholar
     

  • Creemers, R.: China’s social credit system: An evolving practice of control. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3175792

    Article 

    Google Scholar
     

  • Dafoe, A.: AI Governance: A Research Agenda. Governance of AI Program, Future of Humanity Institute, University of Oxford, Oxford (2018)


    Google Scholar
     

  • Defelipe, J.: The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29 (2011). https://doi.org/10.3389/fnana.2011.00029

    Article 

    Google Scholar
     

  • Dignum, V.: Responsible Artificial Intelligence: how to Develop and use AI in a Responsible way. Springer, Cham (2019)

    Book 

    Google Scholar
     

  • Dilmegani, C.: When will Singularity Happen? 1700 Expert Opinions of AGI. AIMultiple Research (2023)

  • Donovan, J.M., Caplan, R., Matthews, J.N., Hanson, L.: Algorithmic Accountability: A Primer. Data & Society, New York (2018)


    Google Scholar
     

  • Dreyfus, H.L.: Why heideggerian AI failed and how fixing it would require making it more heideggerian. Philos. Psychol. 20(2), 247–268 (2007). https://doi.org/10.1080/09515080701239510

    Article 

    Google Scholar
     

  • Eden, A.H., Steinhart, E., Pearce, D., Moor, J.H.: Singularity hypotheses: An overview. In: Eden, A.H., Moor, J.H., Søraker, J.H., Steinhart, E. (eds.) Singularity Hypotheses: A Scientific and Philosophical Assessment, pp. 1–12. Springer, Berlin, Heidelberg (2013)


    Google Scholar
     

  • EIA. (2024). How much electricity does a power plant generate? Retrieved from https://www.eia.gov/tools/faqs/faq.php?id=104&%3Bt=3

  • Floridi, L.: The ethics of artificial intelligence: Principles, challenges, and opportunities. (2023)

  • Floridi, L., Cowls, J.: A unified framework of five principles for AI in society. In: Carta, S. (ed.) Machine Learning and the city: Applications in Architecture and Urban Design, pp. 535–545. Wiley, Hoboken (2022)

    Chapter 

    Google Scholar
     

  • Goertzel, B., Pitt, J., Novamente, L.: Nine ways to bias open-source AGI toward friendliness. Nine, 22(1), 116. (2012)

  • Good, I.J.: Speculations concerning the first ultraintelligent machine. Adv. Comput. 6, 31–88 (1966). https://doi.org/10.1016/S0065-2458(08)60418-0

    Article 

    Google Scholar
     

  • Graham, R.: Discourse analysis of academic debate of ethics for AGI. AI Soc. 37(4), 1519–1532 (2022). https://doi.org/10.1007/s00146-021-01228-7

    Article 

    Google Scholar
     

  • Greenberg, A.: The untold story of NotPetya, the most devastating cyberattack in history. Wired. August. Retrieved from (2018). https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

  • Griggs, T., Wakabayashi, D.: How a self-driving Uber killed a pedestrian in Arizona. The New York Times. Retrieved from (2018). https://www.nytimes.com/interactive/2018/03/20/us/self-driving-uber-pedestrian-killed.html

  • Hamilton, M., Zisserman, A., Hershey, J.R., Freeman, W.T.: Separating the chirp from the chat: self-supervised visual grounding of sound and language. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13117–13127): IEEE. (2024)

  • Havlin, S., Kenett, D.Y.: Cascading failures in interdependent economic networks. Paper presented at the Proceedings of the International Conference on Social Modeling and Simulation, plus Econophysics Colloquium 2014. (2015)

  • Issac, R., Sangeetha, S., Silpa, S.: Technological singularity in artificial intelligence. (2020)

  • Julia Angwin, J.L., Mattu, S., Kirchner, L.: ProPublica. Machine Bias. Retrieved from (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

  • Konečný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: Distributed machine learning for on-device intelligence. arXiv Preprint arXiv:161002527. (2016)

  • Kurshan, E.: Systematic AI approach for AGI: Addressing alignment, energy, and AGI grand challenges. (2023). arXiv preprint arXiv:2310.15274.

  • Lee, J.A., Hilty, R., Liu, K.C.: Artificial Intelligence and Intellectual Property. Oxford University Press, Oxford (2021)

    Book 

    Google Scholar
     

  • Makridakis, S., Petropoulos, F., Kang, Y.: Large language models: Their success and impact. Forecasting. 5(3), 536–549 (2023)

    Article 

    Google Scholar
     

  • Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P., Dewhurst, M.: A Future that Works: Automation, Employment, and Productivity. McKinsey & Company, New York (2017)


    Google Scholar
     

  • Marcus, G.: Deep learning: a critical appraisal. arXiv preprint arXiv:1801.00631. (2018)

  • McDonald, J., Li, B., Frey, N., Tiwari, D., Gadepally, V., Samsi, S.: Great power, great responsibility: Recommendations for reducing energy for training language models. arXiv Preprint arXiv:220509646. (2022)

  • Mehonic, A., Kenyon, A.J.: Brain-inspired computing needs a master plan. Nature. 604(7905), 255–260 (2022). https://doi.org/10.1038/s41586-021-04362-w

    Article 

    Google Scholar
     

  • Moreno, F.R.: Generative AI and deepfakes: A human rights approach to tackling harmful content. Int. Rev. Law Comput. Technol. 1–30 (2024). https://doi.org/10.1080/13600869.2024.2324540

  • Mueller, M.: The Myth of AGI. Internet Governance Project. (2024)

  • Myers, D., Mohawesh, R., Chellaboina, V.I., Sathvik, A.L., Venkatesh, P., Ho, Y.-H., Jararweh, Y.: Foundation and large language models: Fundamentals, challenges, opportunities, and social impacts. Cluster Comput. 27(1), 1–26 (2024)

    Article 

    Google Scholar
     

  • Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti, V., Zaharia, M.: Efficient large-scale language model training on GPU clusters using megatron-LM. In SC21: international conference for high performance computing, networking, storage and analysis (pp. 1–14). New York: Association for Computing Machinery. (2021)

  • OECD: An OECD learning framework 2030. In: Bast, G., Carayannis, E.G., Campbell, D.F.J. (eds.) The Future of Education and Labor, pp. 23–35. Springer International Publishing, Cham (2019)

    Chapter 

    Google Scholar
     

  • Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.M., Rothchild, D., Dean, J.: Carbon emissions and large neural network training. arXiv Preprint arXiv:210410350. (2021)

  • Rae, J.W., Potapenko, A., Jayakumar, S.M., Lillicrap, T.P.: Compressive transformers for long-range sequence modelling. (2019). arXiv preprint arXiv:1911.05507.

  • Raimondo, S.G.M., Carnahan, L., Mahn, A., Scholl, M., Bowman, W., Chua, J., Nistir, B.: Prioritizing Cybersecurity risk for Enterprise risk Management. National Institute of Standards and Technology, Gaithersburg (2022)


    Google Scholar
     

  • Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier. Paper presented at the Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. (2016)

  • Russell, S.: Human-Compatible Artificial Intelligence. In. (2022)

  • Saveliev, A., Zhurenkov, D.: Artificial intelligence and social responsibility: The case of the artificial intelligence strategies in the United States, Russia, and China. Kybernetes. 50(3), 656–675 (2021). https://doi.org/10.1108/K-01-2020-0060

    Article 

    Google Scholar
     

  • Scherer, M.U.: Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harv. J. Law Technol. 29, 353 (2015). https://doi.org/10.2139/ssrn.2609777

    Article 

    Google Scholar
     

  • Schuett, J., Dreksler, N., Anderljung, M., McCaffary, D., Heim, L., Bluemke, E., Garfinkel, B.: Towards best Practices in AGI Safety and Governance. Surv. Expert Opin (2023)

  • Schwarcz, S.L.: Systemic risk. Geo Lj. 97, 193 (2008)


    Google Scholar
     

  • Shao, Z., Zhao, R., Yuan, S., Ding, M., Wang, Y.: Tracing the evolution of AI in the past decade and forecasting the emerging trends. Expert Syst. Appl. 209, 118221 (2022). https://doi.org/10.1016/j.eswa.2022.118221

    Article 

    Google Scholar
     

  • Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hassabis, D.: Mastering the game of Go without human knowledge. Nature. 550(7676), 354–359 (2017). https://doi.org/10.1038/nature24270

    Article 

    Google Scholar
     

  • Staffs of CFTC, & SEC: Findings regarding the market events of MAY 6, 2010. Retrieved from (2010). https://www.sec.gov/news/studies/2010/marketevents-report.pdf

  • Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient Processing of deep Neural Networks. Springer, Cham (2020)

    Book 

    Google Scholar
     

  • UNIDO: UNIDO launches global alliance on ai for industry and manufacturing (AIM-Global) at world AI conference 2023. Retrieved from (2023). https://www.unido.org/news/unido-launches-global-alliance-ai-industry-and-manufacturing-aim-global-world-ai-conference-2023

  • Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Polosukhin, I.: Attention is all you need. In NIPS’17: proceedings of the 31st international conference on neural information processing systems (pp. 6000–6010). California: Curran Associates Inc. (2017)

  • Voigt, P., Von Bussche, D., A: The EU General data Protection Regulation (GDPR): A Practical Guide, vol. 10. Springer International Publishing, Cham (2017)

    Book 

    Google Scholar
     

  • Wachter, S., Mittelstadt, B., Floridi, L.: Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation. Int. Data Priv. Law. 7(2), 76–99 (2017). https://doi.org/10.1093/idpl/ipx005

    Article 

    Google Scholar
     

  • World Economic Forum: The future of jobs report 2020. Retrieved from (2020). https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf

  • Xi, B.: Adversarial machine learning for cybersecurity and computer vision: Current developments and challenges. Wires Comput. Stat. 12(5), e1511 (2020). https://doi.org/10.1002/wics.1511

    Article 
    MathSciNet 

    Google Scholar
     

  • Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., Pan, Y.: Intelligent computing: The latest advances, challenges, and future. Intell. Comput. 2, 0006 (2023). https://doi.org/10.34133/icomputing.0006

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *