Uncategorized

Unleashing the Power of Large Language Models in Solving Machine Learning Tasks



Download a PDF of the paper titled MLCopilot: Unleashing the Power of Large Language Models in Solving Machine Learning Tasks, by Lei Zhang and 4 other authors

Download PDF

Abstract:The field of machine learning (ML) has gained widespread adoption, leading to significant demand for adapting ML to specific scenarios, which is yet expensive and non-trivial. The predominant approaches towards the automation of solving ML tasks (e.g., AutoML) are often time-consuming and hard to understand for human developers. In contrast, though human engineers have the incredible ability to understand tasks and reason about solutions, their experience and knowledge are often sparse and difficult to utilize by quantitative approaches. In this paper, we aim to bridge the gap between machine intelligence and human knowledge by introducing a novel framework, which leverages the state-of-the-art large language models to develop ML solutions for novel tasks. We showcase the possibility of extending the capability of LLMs to comprehend structured inputs and perform thorough reasoning for solving novel ML tasks. And we find that, after some dedicated design, the LLM can (i) observe from the existing experiences of ML tasks and (ii) reason effectively to deliver promising results for new tasks. The solution generated can be used directly to achieve high levels of competitiveness. Examples and code available at this https URL.

Submission history

From: Yuge Zhang [view email]
[v1]
Fri, 28 Apr 2023 17:03:57 UTC (204 KB)
[v2]
Sun, 18 Feb 2024 07:22:49 UTC (295 KB)



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *