Uncategorized

The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis | World Journal of Surgical Oncology



  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CACancer J Clin. 2021;71(3):209–49.

    Article 

    Google Scholar
     

  • Thrift AP, El-Serag HB. Burden of gastric cancer. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2020;18(3):534–42.

    Article 
    PubMed 

    Google Scholar
     

  • Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma Nature reviews Disease primers. 2017;3:17036.

    Article 
    PubMed 

    Google Scholar
     

  • Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J, Siegel RL. Cancer treatment and survivorship statistics. CA  Cancer J Clin. 2022;72(5):409–36.

    Article 
    PubMed 

    Google Scholar
     

  • Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Cooke D, Corvera C, Das P, Enzinger PC, Enzler T, Fanta P, et al. Gastric cancer version 2.2022 clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20(2):167–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamashima C, Okamoto M, Shabana M, Osaki Y, Kishimoto T. Sensitivity of endoscopic screening for gastric cancer by the incidence method. Int J Cancer. 2013;133(3):653–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Telford JJ, Enns RA. Endoscopic missed rates of upper gastrointestinal cancers: parallels with colonoscopy. Am J Gastroenterol. 2010;105(6):1298–300.

    Article 
    PubMed 

    Google Scholar
     

  • Veitch AM, Uedo N, Yao K, East JE. Optimizing early upper gastrointestinal cancer detection at endoscopy. Nat Rev Gastroenterol Hepatol. 2015;12(11):660–7.

    Article 
    PubMed 

    Google Scholar
     

  • Raftopoulos SC, Segarajasingam DS, Burke V, Ee HC, Yusoff IF. A cohort study of missed and new cancers after esophagogastroduodenoscopy. Am J Gastroenterol. 2010;105(6):1292–7.

    Article 
    PubMed 

    Google Scholar
     

  • Rugge M, Genta RM, Di Mario F, El-Omar EM, El-Serag HB, Fassan M, Hunt RH, Kuipers EJ, Malfertheiner P, Sugano K, et al. Gastric cancer as preventable disease. Clin Gastroenterol Hepatol : the official clinical practice journal of the American Gastroenterological Association. 2017;15(12):1833–43.

    Article 

    Google Scholar
     

  • Ren W, Yu J, Zhang ZM, Song YK, Li YH, Wang L. Missed diagnosis of early gastric cancer or high-grade intraepithelial neoplasia. World J Gastroenterol. 2013;19(13):2092–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pimenta-Melo AR, Monteiro-Soares M, Libânio D, Dinis-Ribeiro M. Missing rate for gastric cancer during upper gastrointestinal endoscopy: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2016;28(9):1041–9.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Zhu Y, Dong Z, He X, Xu M, Liu J, Zhang M, Tao X, Du H, Chen D, et al. Development and validation of a feature extraction-based logical anthropomorphic diagnostic system for early gastric cancer: A case-control study. EClinicalMedicine. 2022;46:101366.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Sommen F, de Groof J, Struyvenberg M, van der Putten J, Boers T, Fockens K, Schoon EJ, Curvers W, de With P, Mori Y, et al. Machine learning in GI endoscopy: practical guidance in how to interpret a novel field. Gut. 2020;69(11):2035–45.

    Article 
    PubMed 

    Google Scholar
     

  • Gottlieb K, Daperno M, Usiskin K, Sands BE, Ahmad H, Howden CW, Karnes W, Oh YS, Modesto I, Marano C, et al. Endoscopy and central reading in inflammatory bowel disease clinical trials: achievements, challenges and future developments. Gut. 2021;70(2):418–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Rezaeijo SM, Chegeni N, Baghaei Naeini F, Makris D, Bakas S. Within-modality synthesis and novel radiomic evaluation of brain MRI scans. Cancers (Basel). 2023;15(14):3565.

    Article 
    PubMed 

    Google Scholar
     

  • Khanfari H, Mehranfar S, Cheki M, Mohammadi Sadr M, Moniri S, Heydarheydari S, Rezaeijo SM. Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI. BMC Med Imaging. 2023;23(1):195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.

    Article 
    PubMed 

    Google Scholar
     

  • Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol. 2006;59(12):1331–2 (author reply 1332-1333).

    Article 
    PubMed 

    Google Scholar
     

  • McDowell M, Jacobs P. Meta-analysis of the effect of natural frequencies on Bayesian reasoning. Psychol Bull. 2017;143(12):1273–312.

    Article 
    PubMed 

    Google Scholar
     

  • Yao Z, Jin T, Mao B, Lu B, Zhang Y, Li S, Chen W. Construction and multicenter diagnostic verification of intelligent recognition system for endoscopic images from early gastric cancer based on YOLO-V3 algorithm. Front Oncol. 2022;12:815951.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, Matsumoto K, Ueda K, Matsumoto K, Hojo M, et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. Journal of Gastroenterology and Hepatology (Australia). 2021;36(2):482–9.

    Article 

    Google Scholar
     

  • Tang D, Ni M, Zheng C, Ding X, Zhang N, Yang T, Zhan Q, Fu Y, Liu W, Zhuang D, et al. A deep learning-based model improves diagnosis of early gastric cancer under narrow band imaging endoscopy. Surg Endosc. 2022;36(10):7800–10.

    Article 
    PubMed 

    Google Scholar
     

  • Miyaki R, Yoshida S, Tanaka S, Kominami Y, Sanomura Y, Matsuo T, Oka S, Raytchev B, Tamaki T, Koide T, et al. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer. J Clin Gastroenterol. 2015;49(2):108–15.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Xie X, Yang X, Guo L, Liu Z, Zhao X, Luo Y, Jia W, Huang F, Zhu S, et al. Diagnosis of early gastric cancer based on fluorescence hyperspectral imaging technology combined with partial-least-square discriminant analysis and support vector machine. J Biophotonics. 2019;12(5):e201800324.

    Article 
    PubMed 

    Google Scholar
     

  • Li L, Chen Y, Shen Z, Zhang X, Sang J, Ding Y, Yang X, Li J, Chen M, Jin C, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer. 2020;23(1):126–32.

    Article 
    PubMed 

    Google Scholar
     

  • Jin T, Jiang Y, Mao B, Wang X, Lu B, Qian J, Zhou H, Ma T, Zhang Y, Li S, et al. Multi-center verification of the influence of data ratio of training sets on test results of an AI system for detecting early gastric cancer based on the YOLO-v4 algorithm. Front Oncol. 2022;12:953090.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu H, Gong L, Dong D, Zhu L, Wang M, He J, Shu L, Cai Y, Cai S, Su W, et al. Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study. Gastrointest Endosc. 2021;93(6):1333-1341.e1333.

    Article 
    PubMed 

    Google Scholar
     

  • He X, Wu L, Yu H. Real-time use of artificial intelligence for diagnosing early gastric cancer by endoscopy: a multicenter, diagnostic study. United European Gastroenterology Journal. 2021;9(SUPPL 8):777.


    Google Scholar
     

  • Zhou B, Rao X, Xing H, Ma Y, Wang F, Rong L. A convolutional neural network-based system for detecting early gastric cancer in white-light endoscopy. Scand J Gastroenterol. 2022;58(2):157–62.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang LM, Zhang Y, Wang L, Wang JY, Liu YL. Diagnosis of gastric lesions through a deep convolutional neural network. Dig Endosc. 2021;33(5):788–96.

    Article 
    PubMed 

    Google Scholar
     

  • Wu L, Zhou W, Wan X, Zhang J, Shen L, Hu S, Ding Q, Mu G, Yin A, Huang X, et al. A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy. 2019;51(6):522–31.

    Article 
    PubMed 

    Google Scholar
     

  • Wu L, He X, Liu M, Xie H, An P, Zhang J, Zhang H, Ai Y, Tong Q, Guo M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. Endoscopy. 2021;53(12):1199–207.

    Article 
    PubMed 

    Google Scholar
     

  • Tang D, Wang L, Ling T, Lv Y, Ni M, Zhan Q, Fu Y, Zhuang D, Guo H, Dou X, et al. Development and validation of a real-time artificial intelligence-assisted system for detecting early gastric cancer. a multicentre retrospective diagnostic study. EBioMedicine. 2020;62:103146.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noda H, Kaise M, Higuchi K, Koizumi E, Yoshikata K, Habu T, Kirita K, Onda T, Omori J, Akimoto T, et al. Convolutional neural network-based system for endocytoscopic diagnosis of early gastric cancer. BMC Gastroenterology. 2022;22(1):237.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanesaka T, Lee TC, Uedo N, Lin KP, Chen HZ, Lee JY, Wang HP, Chang HT. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest Endosc. 2018;87(5):1339–44.

    Article 
    PubMed 

    Google Scholar
     

  • Ikenoyama Y, Hirasawa T, Ishioka M, Namikawa K, Yoshimizu S, Horiuchi Y, Ishiyama A, Yoshio T, Tsuchida T, Takeuchi Y, et al. Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists. Dig Endosc. 2021;33(1):141–50.

    Article 
    PubMed 

    Google Scholar
     

  • Horiuchi Y, Hirasawa T, Ishizuka N, Tokai Y, Namikawa K, Yoshimizu S, Ishiyama A, Yoshio T, Tsuchida T, Fujisaki J, et al. Performance of a computer-aided diagnosis system in diagnosing early gastric cancer using magnifying endoscopy videos with narrow-band imaging (with videos). Gastrointest Endosc. 2020;92(4):856–65 (e851).

    Article 
    PubMed 

    Google Scholar
     

  • Horiuchi Y, Aoyama K, Tokai Y, Hirasawa T, Yoshimizu S, Ishiyama A, Yoshio T, Tsuchida T, Fujisaki J, Tada T. Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging. Dig Dis Sci. 2020;65(5):1355–63.

    Article 
    PubMed 

    Google Scholar
     

  • Gong L, Wang M, Shu L, He J, Qin B, Xu J, Su W, Dong D, Hu H, Tian J, et al. Automatic captioning of early gastric cancer via magnification endoscopy with narrow band imaging. Gastrointestinal endoscopy. 2022;96(6):929-942.e6.

    Article 
    PubMed 

    Google Scholar
     

  • Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284(6):603–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao R, Tang L, Fang M, Zhong L, Wang S, Gong L, Li J, Dong D, Tian J, et al. Artificial intelligence in gastric cancer: applications and challenges. Gastroenterol Rep. 2022;10:goac064.

  • Bang CS, Lee JJ, Baik GH. Computer-aided diagnosis of esophageal cancer and neoplasms in endoscopic images: a systematic review and meta-analysis of diagnostic test accuracy. Gastrointest Endosc. 2021;93(5):1006-1015. (e1013).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang K, Jiang X, Pan J, Wen Y, Huang Y, Weng S, Lan S, Nie K, Zheng Z, Ji S, et al. Current evidence and future perspective of accuracy of artificial intelligence application for early gastric cancer diagnosis with endoscopy: a systematic and meta-analysis. Front Med. 2021;8:629080.

    Article 

    Google Scholar
     

  • Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, Tang Y, Li B, Su S. Artificial intelligence-assisted endoscopic diagnosis of early upper gastrointestinal cancer: a systematic review and meta-analysis. Front Oncol. 2022;12:855175.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol. 2022;28(5):605–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosseinzadeh M, Gorji A, Fathi Jouzdani A, Rezaeijo SM, Rahmim A, Salmanpour MR. Prediction of cognitive decline in Parkinson’s disease using clinical and DAT SPECT imaging features, and hybrid machine learning systems. Diagnostics (Basel). 2023;13(10):1691.

    Article 
    PubMed 

    Google Scholar
     

  • Heydarheydari S, Birgani MJT, Rezaeijo SM. Auto-segmentation of head and neck tumors in positron emission tomography images using non-local means and morphological frameworks. Pol J Radiol. 2023;88:e365–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article 
    PubMed 

    Google Scholar
     

  • Xie F, Zhang K, Li F, Ma G, Ni Y, Zhang W, Wang J, Li Y. Diagnostic accuracy of convolutional neural network-based endoscopic image analysis in diagnosing gastric cancer and predicting its invasion depth: a systematic review and meta-analysis. Gastrointest Endosc. 2022;95(4):599-609. (e597).

    Article 
    PubMed 

    Google Scholar
     

  • Islam MM, Poly TN, Walther BA, Lin MC, Li YJ. Artificial intelligence in gastric cancer: identifying gastric cancer using endoscopic images with convolutional neural network. Cancers (Basel). 2021;13(21):5253.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou S. Sparse SVM for sufficient data reduction. IEEE Trans Pattern Anal Mach Intell. 2022;44(9):5560–71.

    PubMed 

    Google Scholar
     

  • Erickson BJ, Korfiatis P, Akkus Z. Kline TL Machine learning for medical imaging. Radiographics a review publication of the Radiological Society of North America. 2017;37(2):505–15.

    Article 

    Google Scholar
     

  • Chen S, Lu S, Tang Y, Wang D, Sun X, Yi J, Liu B, Cao Y, Chen Y, Liu X. A machine learning-based system for real-time polyp detection (DeFrame): a retrospective study. Front Med (Lausanne). 2022;9:852553.

    Article 
    PubMed 

    Google Scholar
     

  • Gong EJ, Bang CS, Lee JJ, Baik GH, Lim H, Jeong JH, Choi SW, Cho J, Kim DY, Lee KB, et al. Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study. Endoscopy. 2023;55(8):701–8.

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *