Uncategorized

The dengue-specific immune response and antibody identification with machine learning



  • Rijal, K. R. et al. Epidemiology of dengue virus infections in Nepal, 2006–2019. Infect. Dis. Poverty 10, 52 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J. et al. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol. https://doi.org/10.3389/fimmu.2022.840104 (2022).

  • Low, J. G. et al. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis. 14, 706–715 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, N. M. et al. A randomized, double-blind placebo controlled trial of Balapiravir, a Polymerase inhibitor, in adult dengue patients. J. Infect. Dis. 207, 1442–1450 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Low, J. G., Gatsinga, R., Vasudevan, S. G. & Sampath, A. Dengue antiviral development: a continuing journey. Adv. Exp. Med. Biol. 1062, 319–332 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Natali, E. N., Babrak, L. M. & Miho, E. Prospective artificial intelligence to dissect the dengue immune response and discover therapeutics. Front. Immunol. 12, 574411 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miho, E. et al. Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front. Immunol. 9, 83369 (2018).

  • Greiff, V., Miho, E., Menzel, U. & Reddy, S. T. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol. 36, 738–749 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, W. H. Sequencing the functional antibody repertoire—diagnostic and therapeutic discovery. Nat. Rev. Rheumatol. 11, 171–182 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miho, E., Roškar, R., Greiff, V. & Reddy, S. T. Large-scale network analysis reveals the sequence space architecture of antibody repertoires. Nat. Commun. 10, 1–11 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393–397 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elhanati, Y. et al. Inferring processes underlying B-cell repertoire diversity. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140243 (2015).

    Article 

    Google Scholar
     

  • Horst, A. et al. Machine learning detects anti-DENV signatures in antibody repertoire sequences. Front. Artif. Intell. 4, 115 (2021).

    Article 

    Google Scholar
     

  • Akbar, R. et al. In silico proof of principle of machine learning-based antibody design at unconstrained. bioRxiv https://doi.org/10.1101/2021.07.08.451480 (2021).

  • Greiff, V., Yaari, G. & Cowell, L. G. Mining adaptive immune receptor repertoires for biological and clinical information using machine learning. Curr. Opin. Syst. Biol. 24, 109–119 (2020).

    Article 

    Google Scholar
     

  • Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genom. Med. 9, 75 (2017).

    Article 

    Google Scholar
     

  • Dupic, T. et al. Immune fingerprinting through repertoire similarity. PLoS Genet. 17, e1009301 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slamanig, S. A. & Nolte, M. A. The bone marrow as sanctuary for plasma cells and memory T-cells: implications for adaptive immunity and vaccinology. Cells 10, 1508 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. L. & Davis, M. M. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13, 37–45 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akbar, R. et al. A finite vocabulary of antibody-antigen interaction enables predictability of paratope-epitope binding. bioRxiv https://doi.org/10.1101/759498 (2019).

  • Rajewsky, K., Förster, I. & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238, 1088–1094 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crispin, M., Ward, A. B. & Wilson, I. A. Structure and immune recognition of the HIV glycan shield. Annu Rev. Biophys. 47, 499–523 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wimmerová, M. et al. Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods. PLoS One 7, e46032 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, K. L. et al. Carbohydrate–aromatic interactions in proteins. J. Am. Chem. Soc. 137, 15152–15160 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashford-Rogers, R. J. M. et al. Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res. 23, 1874–1884 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoehn, K. B. et al. Dynamics of immunoglobulin sequence diversity in HIV-1 infected individuals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140241 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell. P. J. iGenetics 3rd edn Vol. 2 (San Francisco Benjamin Cummings, 2011).

  • Parameswaran, P. et al. Convergent antibody signatures in human dengue. Cell Host Microb. 13, 691–700 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rouvinski, A. et al. Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature 520, 109–113 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dejnirattisai, W. et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16, 170–177 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zanini, F. et al. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc. Natl Acad. Sci. USA 115, E12363–E12369 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, L. T. et al. The early whole-blood transcriptional signature of dengue virus and features associated with progression to dengue shock syndrome in Vietnamese children and young adults. J. Virol. 84, 12982–12994 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. et al. A 20-gene set predictive of progression to severe dengue. Cell Rep. 26, 1104–1111.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, E. et al. Bone marrow and the control of immunity. Cell Mol. Immunol. 9, 11–19 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pioli, P. D. Plasma cells, the next generation: beyond antibody secretion. Front. Immunol. 10, 2768 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pioli, P. D., Casero, D., Montecino-Rodriguez, E., Morrison, S. L. & Dorshkind, K. Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51, 351–366.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, D. E. & Knight, K. L. Inflammatory changes in bone marrow microenvironment associated with declining B lymphopoiesis. J. Immunol. 198, 3471–3479 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gazon, H., Barbeau, B., Mesnard, J.M. & Peloponese, J.M. Hijacking of the AP-1 signaling pathway during development of ATL. Front. Microbiol. 8, 961–985 (2018).

  • Antoine, M. & Kiefer, P. Functional characterization of transcriptional regulatory elements in the upstream region and intron 1 of the human S6 ribosomal protein gene. Biochem. J. 336, 327–335 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishii, K. et al. Characteristics and clustering of human ribosomal protein genes. BMC Genom. 7, 37 (2006).

    Article 

    Google Scholar
     

  • Perry, R. P. The architecture of mammalian ribosomal protein promoters. BMC Evol. Biol. 5, 15 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schieffelin, J. S. et al. Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient. Virol. J. 7, 28 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appanna, R. et al. Plasmablasts during acute dengue infection represent a small subset of a broader virus-specific memory B cell pool. EBioMedicine 12, 178–188 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajamanonmani, R. et al. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. J. Gen. Virol. 90, 799–809 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Midgley, C. M. et al. Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity. J. Immunol. 188, 4971–4979 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lok, S.-M. et al. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Biol. 15, 312–317 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus. NPJ Vaccines 2, e00445 (2017).

  • Pavlović, M. et al. The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires. Nat. Mach. Intell. 3, 936–944 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Heavy chain sequence-based classifier for the specificity of human antibodies. Brief. Bioinform. 23, bbab516 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Devulapally, P. R. et al. Simple paired heavy- and light-chain antibody repertoire sequencing using endoplasmic reticulum microsomes. Genom. Med. 10, 34 (2018).

    Article 

    Google Scholar
     

  • Ren, J. et al. The role of the light chain in the structure and binding activity of two cattle antibodies that neutralize bovine respiratory syncytial virus. Mol. Immunol. 112, 123–130 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, L. D. et al. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun. Biol. 2, 1–10 (2019).

    Article 

    Google Scholar
     

  • Sangesland, M. et al. Germline-encoded affinity for cognate antigen enables vaccine amplification of a human broadly neutralizing response against influenza virus. Immunity 51, 735–749.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, X. et al. Longitudinal analysis of T and B cell receptor repertoire transcripts reveal dynamic immune response in COVID-19 patients. Front. Immunol. 11, 2590 (2020).


    Google Scholar
     

  • Tucci, F. A. et al. Biased IGH VDJ gene repertoire and clonal expansions in B cells of chronically hepatitis C virus–infected individuals. Blood 131, 546–557 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalinke, U., Oxenius, A., López-Macías, C., Zinkernagel, R. M. & Hengartner, H. Virus neutralization by germ-line vs. hypermutated antibodies. PNAS 97, 10126–10131 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godoy-Lozano, E. E. et al. Lower IgG somatic hypermutation rates during acute dengue virus infection is compatible with a germinal center-independent B cell response. Genom. Med. 8, e00499 (2016).

  • Wrammert, J. et al. Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 86, 2911–2918 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyatt, J. G. et al. Molecular changes in dengue envelope protein domain III upon interaction with glycosaminoglycans. Pathogens 9, 935 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahala, W. M. P. B., Huang, C., Butrapet, S., White, L. J. & de Silva, A. M. Recombinant dengue type 2 viruses with altered E protein domain III epitopes are efficiently neutralized by human immune sera. J. Virol. 86, 4019–4023 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Alwis, R. et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl Acad. Sci. USA 109, 7439–7444 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strouts, F. R. et al. Early transcriptional signatures of the immune response to a live attenuated tetravalent dengue vaccine vandidate in non-human primates. PLoS Neglect.Trop. Dis. 10, e0004731 (2016).

    Article 

    Google Scholar
     

  • Rouers, A. et al. CD27hiCD38hi plasmablasts are activated B cells of mixed origin with distinct function. iScience 24, 102482 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontana, M. F. et al. JUNB is a key transcriptional modulator of macrophage activation. J. Immunol. 194, 177–186 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hop, H. T. et al. The key role of c-Fos for immune regulation and bacterial dissemination in brucella infected macrophage. Front. Cell. Infect. Microbiol. 8, 4332–4462 (2018).

  • Hoogenboom, H. R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105–1116 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy, S. T. et al. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat. Biotechnol. 28, 965–969 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C.H. et al. Shared IgG infection signatures vs. hemorrhage-restricted IgA clusters in human dengue: a phenotype of differential class-switch via TGFβ1. Front. Immunol. 8, 88321 (2017).

  • Corrie, B. D. et al. iReceptor: A platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories. Immunol. Rev. 284, 24–41 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brochet, X., Lefranc, M.-P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nuc. Acids Res. 36, W503–W508 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Smakaj, E. et al. Benchmarking immunoinformatic tools for the analysis of antibody repertoire sequences. Bioinformatics 36, 1731–1739 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vander Heiden, J. A. et al. Dysregulation of B cell repertoire formation in myasthenia gravis patients revealed through deep sequencing. J. Immunol. 198, 1460–1473 (2017).

    Article 

    Google Scholar
     

  • Greiff, V. et al. Learning the high-dimensional immunogenomic features that predict public and private antibody repertoires. J. Immunol. 199, 2985–2997 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greiff, V. et al. Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development. Cell Rep. 19, 1467–1478 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillespie, C. S. Fitting heavy tailed distributions: the poweRlaw package. J. Stat. Softw. 64, 1–16 (2015).

    Article 

    Google Scholar
     

  • Van Rossum, G. & Drake, F. L. The Python Language Reference Manual (Scotts Valley CA, 2009).

  • R, Development Core Team. A Language and Environment for Statistical Computing. https://www.R-project.org/ (2009).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).

  • Dusa, A. Package “Venn* https://github.com/dusadrian/venn (2021).

  • Wagih, O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics 33, 3645–3647 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, T. et al. Corrplot: Visualization of a Correlation Matrix. https://cran.r-project.org/web/packages/ (2021).

  • Kolde, R. Pheatmap: Pretty Heatmaps. https://rdrr.io/cran/pheatmap/ (2019).

  • Tennekes, M. & Ellis, P. Treemap: Treemap Visualization. https://2021.help.altair.com/2021/panopticon/vizguide/ (2021).

  • Li, J. et al. Structural and functional characterization of a cross-reactive dengue virus neutralizing antibody that recognizes a cryptic epitope. Structure 26, 51–59.e4 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thullier, P. et al. A recombinant Fab neutralizes dengue virus in vitro. J. Biotechnol. 69, 183–190 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y.-Q. et al. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. PLoS One 6, e16059 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. A. et al. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. MBio 4, e00873–00813 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Potent neutralizing antibodies elicited by dengue vaccine in rhesus macaque target diverse epitopes. PLoS Pathog. 15, e1007716 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durham, N. D. et al. Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics. eLife 8, e52384 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Injampa, S. et al. Generation and characterization of cross neutralizing human monoclonal antibody against 4 serotypes of dengue virus without enhancing activity. PeerJ 5, e4021 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. et al. A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion. mAbs 8, 574–584 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teoh, E. P. et al. The structural basis for serotype-specific neutralization of dengue virus by a human antibody. Sci. Transl. Med. 4, 139ra83–139ra83 (2012).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *