Uncategorized

Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques



  • Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology 19, 1–88 (2017).

    Article 

    Google Scholar
     

  • Omuro, A. & DeAngelis, L. M. Glioblastoma and other malignant gliomas: A clinical review. Jama 310, 1842–1850 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H., He, Y., Huang, L., Luo, H. & Zhu, X. The nomogram model predicting overall survival and guiding clinical decision in patients with glioblastoma based on the SEER database. Front. Oncol. 10, 1051 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poon, M. T., Sudlow, C. L., Figueroa, J. D. & Brennan, P. M. Longer-term (≥ 2 years) survival in patients with glioblastoma in population-based studies pre-and post-2005: A systematic review and meta-analysis. Sci. Rep. 10, 11622 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. NEJM 352, 987–996 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bi, W. L. & Beroukhim, R. Beating the odds: Extreme long-term survival with glioblastoma. Neuro-Oncology 16, 1159–1160 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shastry, K. A. & Sanjay, H. A. Machine learning for bioinformatics. In Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications (eds Srinivasa, K. G. et al.) 25–39 (Springer, 2020).

    Chapter 

    Google Scholar
     

  • Zade, A. E., Haghighi, S. S. & Soltani, M. Deep neural networks for neuro-oncology: Towards patient individualized design of chemo-radiation therapy for Glioblastoma patients. J. Biomed. Inform. 127, 104006 (2022).

    Article 

    Google Scholar
     

  • Sorayaie Azar, A. et al. Application of machine learning techniques for predicting survival in ovarian cancer. BMC Med. Inform. Decis. Mak. 22, 345 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Husseini, M. J. et al. Prior malignancy impact on survival outcomes of glioblastoma multiforme; population-based study. Int. J. Neurosci. 129, 447–454 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Senders, J. T. et al. An online calculator for the prediction of survival in glioblastoma patients using classical statistics and machine learning. Neurosurgery 86, E184 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Samara, K. A., Al Aghbari, Z. & Abusafia, A. GLIMPSE: A glioblastoma prognostication model using ensemble learning—a surveillance, epidemiology, and end results study. Health Inf. Sci. Syst. 9, 1–13 (2021).

    Article 

    Google Scholar
     

  • Bakirarar, B., Egemen, E., Dere, Ü. A. & Yakar, F. Machine learning model to identify prognostic factors in glioblastoma: A SEER-based analysis. Pamukkale Med J. 16, 338–348 (2022).


    Google Scholar
     

  • Doppalapudi, S., Qiu, R. G. & Badr, Y. Lung cancer survival period prediction and understanding: Deep learning approaches. Int. J. Med. Inform. 148, 104371 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ryu, S. M., Seo, S. W. & Lee, S. H. Novel prognostication of patients with spinal and pelvic chondrosarcoma using deep survival neural networks. BMC Med. Inform. Decis. Mak. 20, 1–10 (2020).

    Article 

    Google Scholar
     

  • Jajroudi, M. et al. Prediction of survival in thyroid cancer using data mining technique. TCRT 13, 353–359 (2014).


    Google Scholar
     

  • Mourad, M. et al. Machine learning and feature selection applied to SEER data to reliably assess thyroid cancer prognosis. Sci. Rep. 10, 5176 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tewarie, I. A. et al. Survival prediction of glioblastoma patients—are we there yet? A systematic review of prognostic modeling for glioblastoma and its clinical potential. Neurosurg. Rev. 44, 2047–2057 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Z. Y. et al. Competing risk model to determine the prognostic factors and treatment strategies for elderly patients with glioblastoma. Sci. Rep. 11, 9321 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldman, D. A. et al. Lack of survival advantage among re-resected elderly glioblastoma patients: a SEER-Medicare study. Neuro-Oncol. Adv. 3, vdaa159 (2021).

    Article 

    Google Scholar
     

  • Thumma, S. R. et al. Effect of pretreatment clinical factors on overall survival in glioblastoma multiforme: A surveillance epidemiology and end results (SEER) population analysis. World J. Surg. Onc. 10, 1–12 (2012).

    Article 

    Google Scholar
     

  • Farahani, H. A., Rahiminezhad, A. & Same, L. A comparison of partial least squares (PLS) and ordinary least squares (OLS) regressions in predicting of couples mental health based on their communicational patterns. Procedia Soc. Behav. Sci. 5, 1459–1463 (2010).

    Article 

    Google Scholar
     

  • Judkins, D. R. & Porter, K. E. Robustness of ordinary least squares in randomized clinical trials. Stat. Med. 35, 1763–1773 (2016).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Doane, D. P. & Seward, L. E. Measuring skewness: A forgotten statistic?. J. Stat. Educ. https://doi.org/10.1080/10691898.2011.11889611 (2011).

    Article 

    Google Scholar
     

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. JAIR 16, 321–357 (2002).

    Article 

    Google Scholar
     

  • Blagus, R. & Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 14, 1–16 (2013).


    Google Scholar
     

  • Branco, P., Torgo, L., & Ribeiro, R. P. SMOGN: A pre-processing approach for imbalanced regression. In First international workshop on learning with imbalanced domains: Theory and applications, 36–50 (2017).

  • Huang, J. & Ling, C. X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17, 299–310 (2005).

    Article 

    Google Scholar
     

  • Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. JTO 5, 1315–1316 (2010).

    PubMed 

    Google Scholar
     

  • Sidey-Gibbons, J. A. & Sidey-Gibbons, C. J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 1–18 (2019).

    Article 

    Google Scholar
     

  • Deng, X., Liu, Q., Deng, Y. & Mahadevan, S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf. Sci. 340, 250–261 (2016).

    Article 

    Google Scholar
     

  • Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press, 2014).

    Book 

    Google Scholar
     

  • Rikan, S. B., Azar, A. S., Ghafari, A., Mohasefi, J. B. & Pirnejad, H. COVID-19 diagnosis from routine blood tests using artificial intelligence techniques. Biomed. Signal Process. Control. 72, 103263 (2022).

    Article 

    Google Scholar
     

  • Wong, H. B. & Lim, G. H. Measures of diagnostic accuracy: sensitivity, specificity PPV and NPV. Proc. Singap. Healthc. 20, 316–318 (2011).

    Article 

    Google Scholar
     

  • Parikh, R., Mathai, A., Parikh, S., Sekhar, G. C. & Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 56, 45 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785–794 (2016).

  • Kristjanpoller, W., Michell, K. & Minutolo, M. C. A causal framework to determine the effectiveness of dynamic quarantine policy to mitigate COVID-19. Appl. Soft Comput. 104, 107241 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chicco, D., Warrens, M. J. & Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ. Comput. Sci. 7, e623 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miles, J. R-squared, adjusted R-squared. Encycl. Stat. Behav. Sci. https://doi.org/10.1002/0470013192.bsa526 (2005).

    Article 

    Google Scholar
     

  • Royston, P., Moons, K. G., Altman, D. G. & Vergouwe, Y. Prognosis and prognostic research: developing a prognostic model. Bmj 338, B604 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mackillop, W. J. The importance of prognosis in cancer medicine. TNM Online Preprint at https://doi.org/10.1002/0471463736.tnmp01.pub2 (2006).

    Article 

    Google Scholar
     

  • Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L. & Rosati, R. A. Evaluating the yield of medical tests. Jama 247, 2543–2546 (1982).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. An effective tool for predicting survival in breast cancer patients with de novo lung metastasis: Nomograms constructed based on SEER. Front. surg. 9, 939132 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longato, E., Vettoretti, M. & Di Camillo, B. A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models. J. Biomed. Inform. 108, 103496 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, M. et al. Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncol. Adv. 3, vdab125 (2021).

    Article 

    Google Scholar
     

  • Li, S. W. et al. Prognostic factors influencing clinical outcomes of glioblastoma multiforme. Chin. Med. J. 122, 1245–1249 (2009).

    PubMed 

    Google Scholar
     

  • Wen, J., Chen, W., Zhu, Y. & Zhang, P. Clinical features associated with the efficacy of chemotherapy in patients with glioblastoma (GBM): A surveillance, epidemiology, and end results (SEER) analysis. BMC Cancer 21, 1–10 (2021).

    Article 

    Google Scholar
     

  • Villà, S., Balañà, C. & Comas, S. Radiation and concomitant chemotherapy for patients with glioblastoma multiforme. Chin. J. Cancer 33, 25 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckner, J. C. Factors influencing survival in high-grade gliomas. In Seminars in oncology 10–14 (2003).

  • Brodbelt, A. et al. Glioblastoma in england: 2007–2011. EJC 51, 533–542 (2015).

    Article 

    Google Scholar
     

  • Moncada-Torres, A., van Maaren, M. C., Hendriks, M. P., Siesling, S. & Geleijnse, G. Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival. Sci. Rep. 11, 6968 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Currie, C. J. et al. Mortality after incident cancer in people with and without type 2 diabetes: Impact of metformin on survival. Diabetes Care 35, 299–304 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surveillance Research Program: Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence—SEER 18 Regs Custom Data (with additional treatment fields). in Linked To County Attributes – Total US 1969–2017 (1975).

  • SEER incidence data, 1975–2020. SEER https://seer.cancer.gov/data/.

  • Che, W. Q. et al. How to use the Surveillance, Epidemiology, and End Results (SEER) data: Research design and methodology. Mil. Med. Res. 10, 50 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mack, C., Su, Z., & Westreich, D. Managing missing data in patient registries: addendum to registries for evaluating patient outcomes: a user’s guide, (2018).

  • Scheffer, J. Dealing with missing data, (2002).

  • Rado, O., Ali, N., Sani, H. M., Idris, A. & Neagu, D. Performance analysis of feature selection methods for classification of healthcare datasets. In Advances in Intelligent Systems and Computing (ed. Kacprzyk, J.) 929–938 (Springer, 2019).


    Google Scholar
     

  • Laios, A. et al. Feature selection is critical for 2-year prognosis in advanced stage high grade serous ovarian cancer by using machine learning. Cancer Control 28, 10732748211044678 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis and prediction. CSBJ 13, 8–17 (2015).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *