@inproceedings{wang-etal-2023-reducing, title = "Reducing Spurious Correlations in Aspect-based Sentiment Analysis with Explanation from Large Language Models", author = "Wang, Qianlong and Ding, Keyang and Liang, Bin and Yang, Min and Xu, Ruifeng", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-emnlp.193", doi = "10.18653/v1/2023.findings-emnlp.193", pages = "2930--2941", abstract = "Recently, aspect-based sentiment analysis (ABSA) models have yielded promising results. However, they are susceptible to learning spurious correlations between certain words of the input text and output labels while modeling the sentiment feature of the aspect. This spurious correlation will potentially undermine the performance of ABSA models. One direct solution for this problem is to make the model see and learn an explanation of sentiment expression rather than certain words. Motivated by this, we exploit explanations for the sentiment polarity of each aspect from large language models (LLMs) to reduce spurious correlations in ABSA. First, we formulate a prompt template that wraps the sentence, an aspect, and the sentiment label. This template is utilized to prompt LLMs to generate an appropriate explanation that states the sentiment cause. Then, we propose two straightforward yet effective methods to leverage the explanation for preventing the learning of spurious correlations. We conducted extensive comparative experiments on five datasets by integrating them with some representative ABSA models. Results show that our methods can achieve performance gains and enhance the performance and generalization ability of ABSA models.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="wang-etal-2023-reducing"> <titleInfo> <title>Reducing Spurious Correlations in Aspect-based Sentiment Analysis with Explanation from Large Language Models</title> </titleInfo> <name type="personal"> <namePart type="given">Qianlong</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Keyang</namePart> <namePart type="family">Ding</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bin</namePart> <namePart type="family">Liang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Min</namePart> <namePart type="family">Yang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ruifeng</namePart> <namePart type="family">Xu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2023-12</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Findings of the Association for Computational Linguistics: EMNLP 2023</title> </titleInfo> <name type="personal"> <namePart type="given">Houda</namePart> <namePart type="family">Bouamor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Juan</namePart> <namePart type="family">Pino</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kalika</namePart> <namePart type="family">Bali</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Singapore</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Recently, aspect-based sentiment analysis (ABSA) models have yielded promising results. However, they are susceptible to learning spurious correlations between certain words of the input text and output labels while modeling the sentiment feature of the aspect. This spurious correlation will potentially undermine the performance of ABSA models. One direct solution for this problem is to make the model see and learn an explanation of sentiment expression rather than certain words. Motivated by this, we exploit explanations for the sentiment polarity of each aspect from large language models (LLMs) to reduce spurious correlations in ABSA. First, we formulate a prompt template that wraps the sentence, an aspect, and the sentiment label. This template is utilized to prompt LLMs to generate an appropriate explanation that states the sentiment cause. Then, we propose two straightforward yet effective methods to leverage the explanation for preventing the learning of spurious correlations. We conducted extensive comparative experiments on five datasets by integrating them with some representative ABSA models. Results show that our methods can achieve performance gains and enhance the performance and generalization ability of ABSA models.</abstract> <identifier type="citekey">wang-etal-2023-reducing</identifier> <identifier type="doi">10.18653/v1/2023.findings-emnlp.193</identifier> <location> <url>https://aclanthology.org/2023.findings-emnlp.193</url> </location> <part> <date>2023-12</date> <extent unit="page"> <start>2930</start> <end>2941</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Reducing Spurious Correlations in Aspect-based Sentiment Analysis with Explanation from Large Language Models %A Wang, Qianlong %A Ding, Keyang %A Liang, Bin %A Yang, Min %A Xu, Ruifeng %Y Bouamor, Houda %Y Pino, Juan %Y Bali, Kalika %S Findings of the Association for Computational Linguistics: EMNLP 2023 %D 2023 %8 December %I Association for Computational Linguistics %C Singapore %F wang-etal-2023-reducing %X Recently, aspect-based sentiment analysis (ABSA) models have yielded promising results. However, they are susceptible to learning spurious correlations between certain words of the input text and output labels while modeling the sentiment feature of the aspect. This spurious correlation will potentially undermine the performance of ABSA models. One direct solution for this problem is to make the model see and learn an explanation of sentiment expression rather than certain words. Motivated by this, we exploit explanations for the sentiment polarity of each aspect from large language models (LLMs) to reduce spurious correlations in ABSA. First, we formulate a prompt template that wraps the sentence, an aspect, and the sentiment label. This template is utilized to prompt LLMs to generate an appropriate explanation that states the sentiment cause. Then, we propose two straightforward yet effective methods to leverage the explanation for preventing the learning of spurious correlations. We conducted extensive comparative experiments on five datasets by integrating them with some representative ABSA models. Results show that our methods can achieve performance gains and enhance the performance and generalization ability of ABSA models. %R 10.18653/v1/2023.findings-emnlp.193 %U https://aclanthology.org/2023.findings-emnlp.193 %U https://doi.org/10.18653/v1/2023.findings-emnlp.193 %P 2930-2941
Markdown (Informal)
[Reducing Spurious Correlations in Aspect-based Sentiment Analysis with Explanation from Large Language Models](https://aclanthology.org/2023.findings-emnlp.193) (Wang et al., Findings 2023)