Uncategorized

Radiomics-based machine learning models to distinguish between metastatic and healthy bone using lesion-center-based geometric regions of interest



  • Perk, T. et al. Automated classification of benign and malignant lesions in 18 F-NaF PET/CT images using machine learning. Phys. Med. Biol.https://doi.org/10.1088/1361-6560/AAEBD0 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Suhas, M. V. & Mishra, A. Classification of benign and malignant bone lesions on CT images using random forest. In 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2016-Proceedings 1807–1810. https://doi.org/10.1109/RTEICT.2016.7808146 (2017).

  • Acar, E., Leblebici, A., Ellidokuz, B. E., Başbinar, Y. & Kaya, G. C. Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: A retrospective radiomics study. Brit. J. Radiol.https://doi.org/10.1259/bjr.20190286 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suhas, M. V. & Kumar, R. Classification of benign and malignant bone lesions on CT imagesusing support vector machine: A comparison of kernel functions. In 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2016-Proceedings 821–824. https://doi.org/10.1109/RTEICT.2016.7807941 (2017).

  • Homayounieh, F. et al. Semiautomatic segmentation and radiomics for dual-energy CT: A pilot study to differentiate benign and malignant hepatic lesions. Am. J. Roentgenol.https://doi.org/10.2214/AJR.19.22164 (2020).

    Article 

    Google Scholar
     

  • Hong, J. H. et al. Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT. Radiology 299, 626–632. https://doi.org/10.1148/RADIOL.2021203783/ASSET/IMAGES/LARGE/RADIOL.2021203783.VA.JPEG (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, W. et al. A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours. Cancer Imaging 21, 1–10. https://doi.org/10.1186/S40644-021-00387-6/FIGURES/4 (2021).

    Article 

    Google Scholar
     

  • Vial, A. et al. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review. Transl. Cancer Res. 20, 20. https://doi.org/10.21037/21823 (2018).

    Article 

    Google Scholar
     

  • Zhang, Y., Oikonomou, A., Wong, A., Haider, M. A. & Khalvati, F. Radiomics-based prognosis analysis for non-small cell lung cancer. Sci. Rep. 7, 1–8. https://doi.org/10.1038/srep46349 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Baessler, B. et al. Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection. Eur. Radiol. 30, 2334–2345. https://doi.org/10.1007/S00330-019-06495-Z (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Duron, L. et al. A magnetic resonance imaging radiomics signature to distinguish benign from malignant orbital lesions. Invest. Radiol. 56, 173–180. https://doi.org/10.1097/RLI.0000000000000722 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Laderian, B. et al. Role of radiomics to differentiate benign from malignant pheochromocytomas and paragangliomas on contrast enhanced CT scans. J. Clin. Oncol. 37, e14596–e14596. https://doi.org/10.1200/JCO.2019.37.15_SUPPL.E14596 (2019).

    Article 

    Google Scholar
     

  • Li, S. et al. A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography. Sci. Rep. 11, 1–9. https://doi.org/10.1038/s41598-021-87775-x (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yin, P. et al. Machine and deep learning based radiomics models for preoperative prediction of benign and malignant sacral tumors. Front. Oncol. 10, 2235. https://doi.org/10.3389/FONC.2020.564725/BIBTEX (2020).

    Article 

    Google Scholar
     

  • Wang, H. et al. Radiomics nomogram for differentiating between benign and malignant soft-tissue masses of the extremities. J. Magn. Resonance Imaging 51, 155–163. https://doi.org/10.1002/JMRI.26818 (2020).

    Article 

    Google Scholar
     

  • Wang, J. et al. Prediction of malignant and benign of lung tumor using a quantitative radiomic method. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference2016, 1272–1275. https://doi.org/10.1109/EMBC.2016.7590938 (2016).

  • Zhou, L. et al. A deep learning-based radiomics model for differentiating benign and malignant renal tumors. Transl. Oncol. 12, 292–300. https://doi.org/10.1016/J.TRANON.2018.10.012 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, B. J. et al. Benign and malignant thyroid classification using computed tomography radiomics. Med. Imaging 11314, 954–961. https://doi.org/10.1117/12.2549087 (2020).

    Article 

    Google Scholar
     

  • Paul, R. et al. Deep radiomics: Deep learning on radiomics texture images. Med. Imaging 11597, 8–17. https://doi.org/10.1117/12.2582102 (2021).

    Article 

    Google Scholar
     

  • Chen, A. et al. CT-based radiomics model for predicting brain metastasis in category T1 lung adenocarcinoma. Am. J. Roentgenol. 213, 134–139. https://doi.org/10.2214/AJR.18.20591 (2019).

    Article 

    Google Scholar
     

  • Mayerhoefer, M. E. et al. Introduction to radiomics. J. Nucl. Med. 61, 488–495. https://doi.org/10.2967/JNUMED.118.222893 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambin, P. et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer (Oxford, England: 1990) 48, 441–446. https://doi.org/10.1016/J.EJCA.2011.11.036 (2012).

    Article 

    Google Scholar
     

  • Sugai, Y. et al. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients. Radiat. Oncol. 16, 1–12. https://doi.org/10.1186/S13014-021-01810-9/FIGURES/2 (2021).

    Article 

    Google Scholar
     

  • Demircioğlu, A. Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics. Insights Imaging 12, 1–10. https://doi.org/10.1186/S13244-021-01115-1 (2021).

    Article 

    Google Scholar
     

  • Yin, P. et al. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Eur. Radiol. 29, 1841–1847. https://doi.org/10.1007/S00330-018-5730-6 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Delzell, D. A., Magnuson, S., Peter, T., Smith, M. & Smith, B. J. Machine learning and feature selection methods for disease classification with application to lung cancer screening image data. Front. Oncol.https://doi.org/10.3389/FONC.2019.01393 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ligero, M. et al. Selection of radiomics features based on their reproducibility. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference2019, 403–408. https://doi.org/10.1109/EMBC.2019.8857879 (2019).

  • Naseri, H. diCOMBINE: 3D-DICOM visualization and lesion identification web application. https://doi.org/10.5281/ZENODO.5218743 (2021).

  • Flask Web Development, 2nd Edition [Book].

  • Hall, G. & Wright, J. Bone Lesions. Gnepp’s Diagnostic Surgical Pathology of the Head and Neck 689–742 (Elsevier, 2021). https://doi.org/10.1016/B978-0-323-53114-6.00008-0.

    Book 

    Google Scholar
     

  • Zhou, S. H., McCarthy, I. D., McGregor, A. H., Coombs, R. R. & Hughes, S. P. Geometrical dimensions of the lower lumbar vertebrae-analysis of data from digitised CT images. Eur. Spine J. 9, 242–248. https://doi.org/10.1007/S005860000140 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busscher, I., Ploegmakers, J. J., Verkerke, G. J. & Veldhuizen, A. G. Comparative anatomical dimensions of the complete human and porcine spine. Eur. Spine J. 19, 1104–1114. https://doi.org/10.1007/S00586-010-1326-9/FIGURES/8 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Griethuysen, J. J. et al. Computational radiomics system to decode the radiographic phenotype. Can. Res. 77, e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Radiomic Features-pyradiomics v3.0.1.post9+gdfe2c14 documentation.

  • Zwanenburg, A. et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338. https://doi.org/10.1148/RADIOL.2020191145 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fontaine, P. et al. The importance of feature aggregation in radiomics: A head and neck cancer study. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-76310-z (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wakabayashi, K. et al. A predictive model for pain response following radiotherapy for treatment of spinal metastases. Sci. Rep. 11, 12908. https://doi.org/10.1038/s41598-021-92363-0 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kochendörffer, R. & Kreyszig, E. Advanced engineering mathematics. Biom. Z. 7, 129–130. https://doi.org/10.1002/BIMJ.19650070232 (1965).

    Article 

    Google Scholar
     

  • Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodol.) 36, 111–147. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x (1974).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Rizzo, S. et al. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp.https://doi.org/10.1186/S41747-018-0068-Z (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • F.R.S., K. P. LIII. On lines and planes of closest fit to systems of points in space. 2, 559–572. https://doi.org/10.1080/14786440109462720 (2010).

  • Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 13, 411–430. https://doi.org/10.1016/S0893-6080(00)00026-5 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Das, S. & Mert Cakmak, U. Hands-On Automated Machine Learning: A Beginner’s Guide to Building Automated Machine Learning Systems Using AutoML and Python 1st edn. (Packt Publishing, 2018).


    Google Scholar
     

  • Kim, S.-J., Koh, K., Lustig, M., Boyd, S. & Gorinevsky, D. An interior-point method for large-ScalèScalè 1-regularized least squares. IEEE J. Sel. Topics Signal Process.https://doi.org/10.1109/JSTSP.2007.910971 (2007).

    Article 

    Google Scholar
     

  • Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422. https://doi.org/10.1023/A:1012487302797 (2002).

    Article 
    MATH 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 1. Supervised learning-scikit-learn 0.20.4 documentation.

  • 1.4. Support Vector Machines-scikit-learn 1.0.1 documentation.

  • 1.9. Naive Bayes-scikit-learn 1.0.1 documentation.

  • 1.6. Nearest Neighbors-scikit-learn 1.0.1 documentation.

  • 1.2. Linear and Quadratic Discriminant Analysis-scikit-learn 1.0.1 documentation.

  • 1.7. Gaussian Processes-scikit-learn 1.0.1 documentation.

  • 1.10. Decision Trees-scikit-learn 1.0.1 documentation.

  • 1.11. Ensemble methods-scikit-learn 1.0.1 documentation.

  • 1.17. Neural network models (supervised)-scikit-learn 1.0.1 documentation.

  • Kingma, D. P. & Ba, J. L. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings (2015).

  • Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Programm. 45, 503–528. https://doi.org/10.1007/BF01589116 (1989).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Goodfellow, I., Bengio, Y. & Courville, A. Deep learning—whole book. Nature 521, 800 (2016).

    MATH 

    Google Scholar
     

  • Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874. https://doi.org/10.1016/J.PATREC.2005.10.010 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95. https://doi.org/10.1109/MCSE.2007.55 (2007).

    Article 

    Google Scholar
     

  • Hossein, N. et al. A radiomics-based machine learning pipeline to distinguish between metastatic and healthy bone using lesion-center-based geometric regions of interest; dataset. https://doi.org/10.6084/m9.figshare.19224615.v1 (2022).

  • Kocak, B., Durmaz, E. S., Ates, E. & Kilickesmez, O. Radiomics with artificial intelligence: A practical guide for beginners. Diagn. Interv. Radiol. (Ankara, Turkey) 25, 485–495. https://doi.org/10.5152/DIR.2019.19321 (2019).

    Article 

    Google Scholar
     

  • Haarburger, C. et al. Radiomics feature reproducibility under inter-rater variability in segmentations of CT images. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-69534-6 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kocak, B., Durmaz, E. S., Kaya, O. K., Ates, E. & Kilickesmez, O. Reliability of single-slice-based 2D CT texture analysis of renal masses: Influence of intra- and interobserver manual segmentation variability on radiomic feature reproducibility. Am. J. Roentgenol. 213, 377–383. https://doi.org/10.2214/AJR.19.21212 (2019).

    Article 

    Google Scholar
     

  • Hua, J., Xiong, Z., Lowey, J., Suh, E. & Dougherty, E. R. Optimal number of features as a function of sample size for various classification rules. Bioinformatics (Oxford, England) 21, 1509–1515. https://doi.org/10.1093/BIOINFORMATICS/BTI171 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Tripathy, R., Bilionis, I. & Gonzalez, M. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation. J. Comput. Phys. 321, 191–223. https://doi.org/10.1016/J.JCP.2016.05.039 (2016).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Rasmussen, C. E. & Williams, C. K. I. Gaussian processes for machine learning. Gaussian Processes Mach. Learn.https://doi.org/10.7551/MITPRESS/3206.001.0001 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Progress Artif. Intell. 5, 221–232. https://doi.org/10.1007/S13748-016-0094-0/TABLES/1 (2016).

    Article 

    Google Scholar
     

  • Xie, C. et al. Effect of machine learning re-sampling techniques for imbalanced datasets in 18 F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients. Eur. J. Nucl. Med. Mol. Imaging 47, 2826–2835. https://doi.org/10.1007/S00259-020-04756-4 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, V. et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 30, 1234–1248. https://doi.org/10.1016/J.MRI.2012.06.010 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y., Wong, A. K. & Kamel, M. S. Classification of imbalanced data: A review. IEEE J. Biomed. Health Inform. 23, 687–719. https://doi.org/10.1142/S0218001409007326 (2011).

    Article 

    Google Scholar
     

  • He, H. & Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications. Imbalanced Learning Foundations, Algorithms, and Applications (Wiley, 2013). https://doi.org/10.1002/9781118646106.

    Book 
    MATH 

    Google Scholar
     

  • Bibault, J. E. et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci. Rep. 8, 1–8. https://doi.org/10.1038/s41598-018-30657-6 (2018).

    Article 
    CAS 

    Google Scholar
     

  • He, Y. et al. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study. EBioMedicine 62, 103121. https://doi.org/10.1016/J.EBIOM.2020.103121 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *