Accurate prediction of postnatal growth failure (PGF) can be beneficial for early intervention and prevention. We aimed to develop a machine learning model to predict PGF at discharge among very low birth weight (VLBW) infants using extreme gradient boosting. A total of 729 VLBW infants, born between 2013 and 2017 in four hospitals, were included. PGF was defined as a decrease in z-score between birth and discharge that was greater than 1.28. Feature selection and addition were performed to improve the accuracy of prediction at four different time points, including 0, 7, 14, and 28 days after birth. A total of 12 features with high contribution at all time points by feature importance were decided upon, and good performance was shown as an area under the receiver operating characteristic curve (AUROC) of 0.78 at 7 days. After adding weight change to the 12 features-which included sex, gestational age, birth weight, small for gestational age, maternal hypertension, respiratory distress syndrome, duration of invasive ventilation, duration of non-invasive ventilation, patent ductus arteriosus, sepsis, use of parenteral nutrition, and reach at full enteral nutrition-the AUROC at 7 days after birth was shown as 0.84. Our prediction model for PGF performed well at early detection. Its potential clinical application as a supplemental tool could be helpful for reducing PGF and improving child health.
Keywords:
machine learning; performance; postnatal growth failure; prediction.