Uncategorized

Predicting cognitive scores from wearable-based digital physiological features using machine learning: data from a clinical trial in mild cognitive impairment | BMC Medicine



  • Bai W, Chen P, Cai H, Zhang Q, Su Z, Cheung T, et al. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology studies. Age Ageing. 2022;51:afac173.

    PubMed 

    Google Scholar
     

  • van der Flier WM, de Vugt ME, Smets EMA, Blom M, Teunissen CE. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia. Nat Aging. 2023;3:494–505.

    Article 
    PubMed 

    Google Scholar
     

  • Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 2004;3:246–8.

    Article 
    PubMed 

    Google Scholar
     

  • Huckvale K, Venkatesh S, Christensen H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. Npj Digit Med. 2019;2:1–11.

    Article 

    Google Scholar
     

  • Alfalahi H, Dias SB, Khandoker AH, Chaudhuri KR, Hadjileontiadis LJ. A scoping review of neurodegenerative manifestations in explainable digital phenotyping. Npj Park Dis. 2023;9:1–22.


    Google Scholar
     

  • Chan JYC, Yau STY, Kwok TCY, Tsoi KKF. Diagnostic performance of digital cognitive tests for the identification of MCI and dementia: A systematic review. Ageing Res Rev. 2021;72:101506.

    Article 
    PubMed 

    Google Scholar
     

  • Dagum P. Digital biomarkers of cognitive function. Npj Digit Med. 2018;1:1–3.

    Article 

    Google Scholar
     

  • Kourtis LC, Regele OB, Wright JM, Jones GB. Digital biomarkers for Alzheimer’s disease: the mobile/wearable devices opportunity. Npj Digit Med. 2019;2:1–9.

    Article 

    Google Scholar
     

  • Cygankiewicz I, Zareba W. Heart rate variability. In: Buijs RM, Swaab DF, editors. Handbook of Clinical Neurology. Elsevier; 2013. p. 379–93.


    Google Scholar
     

  • Forte G, Favieri F, Casagrande M. Heart rate variability and cognitive function: a systematic review. Front Neurosci. 2019;13:710.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnon V, Vallet GT, Benson A, Mermillod M, Chausse P, Lacroix A, et al. Does heart rate variability predict better executive functioning? A systematic review and meta-analysis. Cortex. 2022;155:218–36.

    Article 
    PubMed 

    Google Scholar
     

  • Liu KY, Elliott T, Knowles M, Howard R. Heart rate variability in relation to cognition and behavior in neurodegenerative diseases: A systematic review and meta-analysis. Ageing Res Rev. 2022;73:101539.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart Rate Variability, Prefrontal Neural Function, and Cognitive Performance: The Neurovisceral Integration Perspective on Self-regulation, Adaptation, and Health. Ann Behav Med. 2009;37:141–53.

    Article 
    PubMed 

    Google Scholar
     

  • Nicolini P, Mari D, Abbate C, Inglese S, Bertagnoli L, Tomasini E, et al. Autonomic function in amnestic and non-amnestic mild cognitive impairment: spectral heart rate variability analysis provides evidence for a brain–heart axis. Sci Rep. 2020;10:11661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glover GH. Overview of Functional Magnetic Resonance Imaging. Neurosurg Clin N Am. 2011;22:133–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorond FA, Hurwitz S, Salat DH, Greve DN, Fisher NDL. Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology. 2013;81:904–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolini P, Lucchi T, Abbate C, Inglese S, Tomasini E, Mari D, et al. Autonomic function predicts cognitive decline in mild cognitive impairment: Evidence from power spectral analysis of heart rate variability in a longitudinal study. Front Aging Neurosci. 2022;14:886023.

  • Elias MF, Torres RV. The Renaissance of Heart Rate Variability as a Predictor of Cognitive Functioning. Am J Hypertens. 2018;31:21–3.

    Article 

    Google Scholar
     

  • Critchley HD. Review: Electrodermal Responses: What Happens in the Brain. Neuroscientist. 2002;8:132–42.

    Article 
    PubMed 

    Google Scholar
     

  • Posada-Quintero HF, Florian JP, Orjuela-Cañón AD, Aljama-Corrales T, Charleston-Villalobos S, Chon KH. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann Biomed Eng. 2016;44:3124–35.

    Article 
    PubMed 

    Google Scholar
     

  • Posada-Quintero HF, Chon KH. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors. 2020;20:479.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posada-Quintero HF, Chon KH. Phasic component of electrodermal activity is more correlated to brain activity than tonic component. In: 2019 IEEE EMBS International Conference on Biomedical Health Informatics (BHI). 2019. p. 1–4.

  • Eggenberger P, Bürgisser M, Rossi RM, Annaheim S. Body temperature is associated with cognitive performance in older adults with and without mild cognitive impairment: a cross-sectional analysis. Front Aging Neurosci. 2021;13:585904.

  • Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, et al. Metabolic determinants of Alzheimer’s disease: A focus on thermoregulation. Ageing Res Rev. 2021;72:101462.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen R, Jankovic F, Marinsek N, Foschini L, Kourtis L, Signorini A, et al. Developing measures of cognitive impairment in the real world from consumer-grade multimodal sensor streams. In: Proceedings of the 25th ACM SIGKDD International Conference on knowledge discovery & data mining. New York: Association for Computing Machinery; 2019. p. 2145–55.

  • Buegler M, Harms RL, Balasa M, Meier IB, Exarchos T, Rai L, et al. Digital biomarker-based individualized prognosis for people at risk of dementia. Alzheimers Dement Diagn Assess Dis Monit. 2020;12:e12073.


    Google Scholar
     

  • Neuroglee Therapeutics. Open label clinical trial to study the effectiveness and safety of a digitally based multidomain intervention for mild cognitive impairment. Clin Trial Registration. clinicaltrials.gov; 2022.

  • Patterson MD, Leonardo J, Jabar SB, Rykov YG, Gangwar BA, Yee J, et al. Effectiveness of digital-based multidomain intervention for mild cognitive impairment. In: Clinical Trial Alzheimer’s Disease 2022. San Francisco: The Journal of Prevention of Alzheimer’s Disease; 2022. p. 103–4.

  • Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. The Lancet. 2015;385:2255–63.

    Article 

    Google Scholar
     

  • Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.

    Article 

    Google Scholar
     

  • Makowski D, Pham T, Lau ZJ, Brammer JC, Lespinasse F, Pham H, et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav Res Methods. 2021;53:1689–96.

    Article 
    PubMed 

    Google Scholar
     

  • Elgendi M, Norton I, Brearley M, Abbott D, Schuurmans D. Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions. PLoS ONE. 2013;8:e76585.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham T, Lau ZJ, Chen SHA, Makowski D. Heart rate variability in psychology: a review of HRV indices and an analysis tutorial. Sensors. 2021;21:3998.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hon N, Yap MJ, Jabar SB. The trajectory of the target probability effect. Atten Percept Psychophys. 2013;75:661–6.

    Article 
    PubMed 

    Google Scholar
     

  • Guye S, De Simoni C, von Bastian CC. Do individual differences predict change in cognitive training performance? A latent growth curve modeling approach. J Cogn Enhanc. 2017;1:374–93.

    Article 

    Google Scholar
     

  • Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Schumacher Dimech A, Santuccione Chadha A, et al. Sex differences in Alzheimer disease — the gateway to precision medicine. Nat Rev Neurol. 2018;14:457–69.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Folarin AA, Sun S, Cummins N, Ranjan Y, Rashid Z, et al. Predicting Depressive Symptom Severity Through Individuals’ Nearby Bluetooth Device Count Data Collected by Mobile Phones: Preliminary Longitudinal Study. JMIR MHealth UHealth. 2021;9:e29840.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, et al. Acetylcholine. Neurosci 2nd Ed. 2001.

  • Crichton GE, Elias MF, Davey A, Alkerwi A. Cardiovascular health and cognitive function: the Maine-Syracuse Longitudinal Study. PLoS ONE. 2014;9:e89317.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broncel A, Bocian R, Kłos-Wojtczak P, Kulbat-Warycha K, Konopacki J. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull. 2020;155:37–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min J, Rouanet J, Martini AC, Nashiro K, Yoo HJ, Porat S, et al. Modulating heart rate oscillation affects plasma amyloid beta and tau levels in younger and older adults. Sci Rep. 2023;13:3967.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue S, Li M-F, Leng B, Yao R, Sun Z, Yang Y, et al. Complement activation mainly mediates the association of heart rate variability and cognitive impairment in adults with obstructive sleep apnea without dementia. Sleep. 2023;46:zsac146.

    Article 
    PubMed 

    Google Scholar
     

  • Kong SDX, Gordon CJ, Hoyos CM, Wassing R, D’Rozario A, Mowszowski L, et al. Heart rate variability during slow wave sleep is linked to functional connectivity in the central autonomic network. Brain Commun. 2023;5:fcad129.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurado MB, Rosselli M. The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev. 2007;17:213–33.

    Article 
    PubMed 

    Google Scholar
     

  • Nesvold A, Fagerland MW, Davanger S, Ellingsen Ø, Solberg EE, Holen A, et al. Increased heart rate variability during nondirective meditation. Eur J Prev Cardiol. 2012;19:773–80.

    Article 
    PubMed 

    Google Scholar
     

  • Tyagi A, Cohen M. Yoga and heart rate variability: a comprehensive review of the literature. Int J Yoga. 2016;9:97–113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brenes GA, Sohl S, Wells RE, Befus D, Campos CL, Danhauer SC. The effects of yoga on patients with mild cognitive impairment and dementia: a scoping review. Am J Geriatr Psychiatry. 2019;27:188–97.

    Article 
    PubMed 

    Google Scholar
     

  • Wong WP, Coles J, Chambers R, Wu DB-C, Hassed C. The effects of mindfulness on older adults with mild cognitive impairment. J Alzheimers Dis Rep. 2017;1:181–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X, et al. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc. 2008;56:1244–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manning JR, Notaro GM, Chen E, Fitzpatrick PC. Fitness tracking reveals task-specific associations between memory, mental health, and physical activity. Sci Rep. 2022;12:13822.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tranah GJ, Blackwell T, Stone KL, Ancoli-Israel S, Paudel ML, Ensrud KE, et al. Circadian activity rhythms and risk of incident dementia and MCI in older women. Ann Neurol. 2011;70:722–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogers-Soeder TS, Blackwell T, Yaffe K, Ancoli-Israel S, Redline S, Cauley JA, et al. Rest-activity rhythms and cognitive decline in older men: the MrOS sleep study. J Am Geriatr Soc. 2018;66:2136–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Q, Sampson JN, LaCroix AZ, Shadyab AH, Zeitzer JM, Ancoli-Israel S, et al. Nonparametric parameters of 24-hour rest-activity rhythms and long-term cognitive decline and incident cognitive impairment in older men. J Gerontol Ser A. 2022;77:250–8.

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *