Uncategorized

Personalising intravenous to oral antibiotic switch decision making through fair interpretable machine learning



  • Dyar, O. J., Huttner, B., Schouten, J. & Pulcini, C. What is antimicrobial stewardship? Clin. Microbiol. Infect. 23, 793–798 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oosterheert, J. J. et al. Effectiveness of early switch from intravenous to oral antibiotics in severe community acquired pneumonia: multicentre randomised trial. BMJ 333, 1193 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agency, U. H. S. Antimicrobial stewardship: Start smart – then focus https://www.gov.uk/government/publications/antimicrobial-stewardship-start-smart-then-focus. (2015).

  • Davar, K. et al. Can the Future of ID Escape the Inertial Dogma of Its Past? : The Exemplars of Shorter Is Better and Oral Is the New IV. Open Forum Infectious Diseases ofac706, https://doi.org/10.1093/ofid/ofac706 (2022).

  • Gilchrist, M. et al. Outpatient parenteral antimicrobial therapy (OPAT) in the UK: findings from the BSAC National Outcomes Registry (2015–19). J. Antimicrob. Chemother. 77, 1481–1490 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Platts, S., Payne, B. A. I., Price, D. A., Pareja-Cebrian, L. & Schwab, U. Oral step-down for Staphylococcus aureus bacteraemia: An opportunity for antimicrobial stewardship? Clin. Infect. Pract. 16, 100202 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaasch, A. J. et al. Early oral switch in low-risk Staphylococcus aureus bloodstream infection https://www.medrxiv.org/content/10.1101/2023.07.03.23291932v1. (2023).

  • Spellberg, B., Chambers, H. F., Musher, D. M., Walsh, T. L. & Bayer, A. S. Evaluation of a paradigm shift from intravenous antibiotics to oral step-down therapy for the treatment of infective endocarditis: a narrative review. JAMA Int. Med. 180, 769–777 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iversen, K. et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N. Engl. J. Med. 380, 415–424 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H.-K. et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 380, 425–436 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wald-Dickler, N. et al. Oral Is the New IV. Challenging decades of blood and bone infection dogma: a systematic review. Am. J. Med. 135, 369–379.e1 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ray-Barruel, G., Xu, H., Marsh, N., Cooke, M. & Rickard, C. M. Effectiveness of insertion and maintenance bundles in preventing peripheral intravenous catheter-related complications and bloodstream infection in hospital patients: a systematic review. Infect. Dis. Health 24, 152–168 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • McMeekin, N. et al. Cost-effectiveness of oral versus intravenous antibiotics (OVIVA) in patients with bone and joint infection: evidence from a non-inferiority trial. Wellcome Open Res. 4, 108 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Agency, U. H. S. National antimicrobial intravenous-to-oral switch (IVOS) criteria for early switch https://www.gov.uk/government/publications/antimicrobial-intravenous-to-oral-switch-criteria-for-early-switch/national-antimicrobial-intravenous-to-oral-switch-ivos-criteria-for-early-switch. (2022).

  • Hospenthal, D. R., Waters, C. D., Beekmann, S. E. & Polgreen, P. M. Practice patterns of infectious diseases physicians in transitioning from intravenous to oral therapy in patients with bacteremia. Open Forum Infect. Dis. 7, ofz386 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Buis, D. T. P. et al. Current clinical practice in antibiotic treatment of Staphylococcus aureus bacteraemia: results from a survey in five European countries. J. Antimicrob. Chemother. 77, 2827–2834 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawson, T. M. et al. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately? Clin. Microbiol. Infect. 23, 524–532 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peiffer-Smadja, N. et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin. Microbiol. Infect. 26, 584–595 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolton, W. J. et al. Machine learning and synthetic outcome estimation for individualised antimicrobial cessation. Frontiers in Digital Health 4 https://www.frontiersin.org/articles/10.3389/fdgth.2022.997219. (2022).

  • D’Hondt, E., Ashby, T. J., Chakroun, I., Koninckx, T. & Wuyts, R. Identifying and evaluating barriers for the implementation of machine learning in the intensive care unit. Commun. Med. 2, 1–12 (2022).

    Article 

    Google Scholar
     

  • Johnson, A. et al. Mimic-iv https://physionet.org/content/mimiciv/1.0/. (2021).

  • Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 101, e215–e220 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pollard, T. J. et al. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Sci. Data 5, 180178 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollard, T. J. et al. The eICU Collaborative Research Database (version 2.0). PhysioNet, https://doi.org/10.13026/C2WM1R (2019).

  • Gerber, J. S. et al. Development and application of an antibiotic spectrum index for benchmarking antibiotic selection patterns across hospitals. Infect. Control Hosp. Epidemiol. 38, 993–997 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Guyon, I.et al. (eds.) Advances in Neural Information Processing Systems, vol. 30 (Curran Associates, Inc., 2017). https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

  • Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Broek, A. K., Prins, J. M., Visser, C. E. & van Hest, R. M. Systematic review: the bioavailability of orally administered antibiotics during the initial phase of a systemic infection in non-ICU patients. BMC Infect. Dis. 21, 285 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crabbe, J., Qian, Z., Imrie, F. & van der Schaar, M. Explaining Latent Representations with a Corpus of Examples. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Vaughan, J. W. (eds.) Advances in Neural Information Processing Systems, vol. 34, 12154–12166 (Curran Associates, Inc., 2021). https://proceedings.neurips.cc/paper/2021/file/65658fde58ab3c2b6e5132a39fae7cb9-Paper.pdf.

  • Hardt, M., Price, E. & Srebro, N. Equality of Opportunity in Supervised Learning. arXiv:1610.02413 [cs] http://arxiv.org/abs/1610.02413. (2016).

  • Afrose, S., Song, W., Nemeroff, C. B., Lu, C. & Yao, D. D. Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction. Commun. Med. 2, 1–14 (2022).

    Article 

    Google Scholar
     

  • Schouten, B. et al. Implementing artificial intelligence in clinical practice: a mixed-method study of barriers and facilitators. J. Med. Artif. Intell. 5 (2022).

  • Bolton, W. J., Badea, C., Georgiou, P., Holmes, A. & Rawson, T. M. Developing moral AI to support decision-making about antimicrobial use. Nat. Mach. Intellig. 4, 912–915 (2022).

    Article 

    Google Scholar
     

  • Herm, L.-V., Heinrich, K., Wanner, J. & Janiesch, C. Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability. Int. J. Inf. Manag. 102538 https://www.sciencedirect.com/science/article/pii/S026840122200072X. (2022).

  • Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58, 82–115 (2020).

    Article 

    Google Scholar
     

  • Ciná, G., Röber, T., Goedhart, R. & Birbil, I. Why we do need Explainable AI for Healthcare http://arxiv.org/abs/2206.15363. (2022).

  • Smith, M., Higgs, J. & Ellis, E. Factors influencing clinical decision making. Clin. Reas. Health Professions 3, 89–100 (2008).


    Google Scholar
     

  • McCarthy, K. & Avent, M. Oral or intravenous antibiotics? Australian Prescriber 43, 45–48 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamma, P. D., Miller, M. A. & Cosgrove, S. E. Rethinking how antibiotics are prescribed: incorporating the 4 moments of antibiotic decision making into clinical practice. JAMA 321, 139–140 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Charani, E. et al. Optimising antimicrobial use in humans – review of current evidence and an interdisciplinary consensus on key priorities for research. Lancet Reg. Health – Europe 7, 100161 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cantón, R., Akova, M., Langfeld, K. & Torumkuney, D. Relevance of the consensus principles for appropriate antibiotic prescribing in 2022. J. Antimicrob. Chemother. 77, i2–i9 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Korzilius, J. W. et al. Oral antimicrobial agents in patients with short bowel syndrome: worth a try! J. Antimicrob. Chemotherapy dkad198, https://doi.org/10.1093/jac/dkad198 (2023).

  • Lubba, C. H. et al. catch22: CAnonical Time-series CHaracteristics. Data Min. Knowl. Discov. 33, 1821–1852 (2019).

    Article 

    Google Scholar
     

  • Löning, M. et al. sktime: A Unified Interface for Machine Learning with Time Series http://arxiv.org/abs/1909.07872. (2019).

  • Löning, M. et al. sktime/sktime: v0.13.4 https://zenodo.org/record/7117735. (2022).

  • Vafaie, H. & De Jong, K. Genetic algorithms as a tool for feature selection in machine learning. In Proceedings Fourth International Conference on Tools with Artificial Intelligence TAI ’92, 200–203 (1992).

  • Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, 8024–8035 (Curran Associates, Inc., 2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

  • Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019).

  • Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    Article 

    Google Scholar
     

  • Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization http://arxiv.org/abs/1412.6980. (2014).

  • Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learning Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bird, S. et al. Fairlearn: A toolkit for assessing and improving fairness in AI. Tech. Rep. MSR-TR-2020-32, Microsoft (2020). https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/.

  • Bolton, W. Personalising intravenous to oral antibiotic switch decision making through fair interpretable machine learning. https://github.com/WilliamBolton/iv_to_oral. (2023).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *