Naifar, A., Zeiri, N., Nasrallah, S. A. & Said, M. Linear and nonlinear optical properties of CdSe/ZnTe core/shell spherical quantum dots embedded in different dielectric matrices. Photonics Nanostruct. Fundam. Appl. 40, 100789 (2020).
Piotrowski, P. & Pacuski, W. Photoluminescence of CdTe quantum wells doped with cobalt and iron. J. Lumin. 1(221), 117047 (2020).
Azizian-Kalandaragh, Y., Sedaghatdoust-Bodagh, F. & Habibi-Yangjeh, A. Ultrasound-assisted preparation and characterization of β-Bi2O3 nanostructures: Exploring the photocatalytic activity against rhodamine B. Superlattices Microstruct. 1(81), 151–160 (2015).
Zhao, X., Yang, H., Cui, Z., Li, R. & Feng, W. Enhanced photocatalytic performance of Ag–Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method. Mater. Technol. 32(14), 870–880 (2017).
Afroz, K., Moniruddin, M., Bakranov, N., Kudaibergenov, S. & Nuraje, N. A heterojunction strategy to improve the visible light-sensitive water-splitting performance of photocatalytic materials. J. Mater. Chem. A 6(44), 21696–21718 (2018).
Pirgholi-Givi, G., Azizian-Kalandaragh, Y. & Farazin, J. Comparison of the photocatalytic activity of perovskite structures: Bismuth, barium, and zinc titanate nanostructures for photodegradation of methylene blue from water. J. Photochem. Photobiol. A 1(408), 113104 (2021).
Maeda, K. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6(3), 2167–2173 (2014).
Kulkarni, A. et al. Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells. Int. J. Hydrogen Energy 37(24), 19092–19102 (2012).
Singh, P., Kumar, A. & Kaur, D. ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapor deposition. Opt. Mater. 30(8), 1316–1322 (2008).
Singh, P., Kumar, A. & Kaur, D. Substrate effect on texture properties of nanocrystalline TiO2 thin films. Physica B 403(19–20), 3769–3773 (2008).
Wang, N. et al. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Mater. Lett. 62(21–22), 3691–3693 (2008).
Rao, B. B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater. Chem. Phys. 64(1), 62–65 (2000).
Yoshino, Y., Makino, T., Katayama, Y. & Hata, T. Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering. Vacuum 59(2–3), 538–545 (2000).
Jäger, S., Szyszka, B., Szczyrbowski, J. & Bräuer, G. Comparison of transparent conductive oxide thin films prepared by ac and dc reactive magnetron sputtering. Surf. Coat. Technol. 98(1–3), 1304–1314 (1998).
Birkmire, R. W. & Eser, E. Polycrystalline thin film solar cells: present status and future potential. Annu. Rev. Mater. Sci. 27(1), 625–653 (1997).
Look, D. C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80(1–3), 383–387 (2001).
Bodade, A. B., Bende, A. M. & Chaudhari, G. N. Synthesis and characterization of CdO-doped nanocrystalline ZnO: TiO2-based H2S gas sensor. Vacuum 82(6), 588–593 (2008).
Zhang, X., Zhang, F. & Chan, K. Y. The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties. Mater. Chem. Phys. 97(2–3), 384–389 (2006).
Ke, S., Cheng, X., Wang, Q., Wang, Y. & Pan, Z. Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles. Ceram. Int. 40(6), 8891–8895 (2014).
Salavati-Niasari, M. et al. Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 27(5), 2066–2075 (2016).
Lee, Y. C. & Chen, P. S. Effect of Cu dopant on microstructure and phase transformation of ZnTiO3 thin films prepared by radio frequency magnetron sputtering. Thin Solid Films 520(7), 2672–2678 (2012).
Li, Z. X., Shi, F. B., Ding, Y., Zhang, T. & Yan, C. H. Facile synthesis of highly ordered mesoporous ZnTiO3 with crystalline walls by self-adjusting method. Langmuir 27(23), 14589–14593 (2011).
Wu, S. P., Luo, J. H. & Cao, S. X. Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol–gel technique. J. Alloys Compd. 502(1), 147–152 (2010).
Zhang, P. et al. Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers: A 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity. J. Hazard. Mater. 30(217), 422–428 (2012).
Wang, L., Kang, H., Xue, D. & Liu, C. Low-temperature synthesis of ZnTiO3 nanopowders. J. Cryst. Growth 311(3), 611–614 (2009).
Zhao, L., Liu, F., Wang, X., Zhang, Z. & Yan, J. Preparation and characterizations of ZnTiO3 powders by sol–gel process. J. Sol-Gel Sci. Technol. 33, 103–106 (2005).
Liu, X. Molten salt synthesis of ZnTiO3 powders with around 100 nm grain size crystalline morphology. Mater. Lett. 1(80), 69–71 (2012).
Yu, Y. H. & Xia, M. Preparation and characterization of ZnTiO3 powders by sol–gel process. Mater. Lett. 15(77), 10–12 (2012).
Chang, Y. S. et al. Synthesis, formation and characterization of ZnTiO3 ceramics. Ceram. Int. 30(8), 2183–2189 (2004).
Bobowska, I., Opasińska, A., Wypych, A. & Wojciechowski, P. Synthesis and dielectric investigations of ZnTiO3 obtained by a soft chemistry route. Mater. Chem. Phys. 134(1), 87–92 (2012).
Pal, N., Paul, M. & Bhaumik, A. New mesoporous perovskite ZnTiO3 and its excellent catalytic activity in liquid phase organic transformations. Appl. Catal. A Gen. 393(1–2), 153–160 (2011).
Sharma, M. & Tripathi, S. K. Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA: n-ZnSe Schottky barrier diodes. Mater. Sci. Semicond. Process. 1(41), 155–161 (2016).
Erbilen Tanrıkulu, E., Altındal, Ş & Azizian-Kalandaragh, Y. Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. J. Mater. Sci. Mater. Electron. 29(14), 11801–11811 (2018).
Altındal, Ş et al. A comparison of electrical characteristics of Au/n-Si (MS) structures with PVC and (PVC: Sm2O3) polymer interlayer. Phys. Scr. 96(12), 125838 (2021).
Koczkur, K. M., Mourdikoudis, S., Polavarapu, L. & Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015).
Samuel, A. L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959).
Vapnik, V. The Nature of Statistical Learning Theory (Springer, 1999).
Barkhordari, A. et al. The effect of PVP: BaTiO3 interlayer on the conduction mechanism and electrical properties at MPS structures. Phys. Scr. 96(8), 085805 (2021).
Baran, E. J. & Botto, I. L. Die Raman-Spektren von ZnTiO3 und CdTiO3. Zeitschrift für anorganische und allgemeine Chemie 448(1), 188–192 (1979).
Hurma, T. & Kose, S. XRD Raman analysis and optical properties of CuS nanostructured film. Optik 127(15), 6000–6006 (2016).
Last, J. T. Infrared-absorption studies on barium titanate and related materials. Phys. Rev. 105(6), 1740 (1957).
Nolan, N. T., Seery, M. K. & Pillai, S. C. Crystallization and phase-transition characteristics of sol–gel-synthesized zinc titanates. Chem. Mater. 23(6), 1496–1504 (2011).
Lindon, J. C., Tranter, G. E. & Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry (Academic Press, 2016).
Reitz, J. R., Milford, F. J. & Christy, R. W. Foundations of Electromagnetic Theory 4th edn. (Addison-Wesley, 1993).
Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
Isik, M., Gasanly, N. M. & Turan, R. Spectroscopic ellipsometry study of above-band gap optical constants of layered structured TlGaSe2, TlGaS2 and TlInS2 single crystals. Phys. B Condens. Matter 407(21), 4193–4197 (2012).
Kock, I., Edler, T. & Mayr, S. G. Growth behavior and intrinsic properties of vapor-deposited iron palladium thin films. J. Appl. Phys. 103(4), 528–587 (2008).
Pakizeh, E. Electronic and optical properties of ZnCl4H2Me2biim polymeric complexes (DFT study). J. Green Polym. 1(1), 6–10 (2023).
Pakizeh, E. Optical response and structural properties of Fe-doped Pb (Zr0.52Ti0.48) O3 nanopowders. J. Mater. Sci. Mater. Electron. 31(6), 4872–4881 (2020).
Pakizeh, E., Mohammadi, M. & Mostafaei, A. Effect of Hydrogen concentration on the structural, electronic and optical properties of 2D monolayer MXenes: DFT study. Solid State Commun. 1(369), 115214 (2023).
Pakizeh, E., Jalilian, J. & Mohammadi, M. Electronic, optical and thermoelectric properties of Fe 2 ZrP compound determined via first-principles calculations. RSC Adv. 9(44), 25900–25911 (2019).
Fox, M. Optical Properties of Solids (Oxford University Press, 2001).
Barkhordari, A., Mashayekhi, H. R., Amiri, P., Altındal, Ş & Azizian-Kalandaragh, Y. Role of graphene nanoparticles on the electrophysical processes in PVP and PVP: ZnTiO3 polymer layers at Schottky diode (SD). Semicond. Sci. Technol. 38(7), 075002 (2023).
Adachi, S., Adachi, S. The Interband Transition Region: Amorphous and Microcrystalline Materials. Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles. 1999;131–177.
Barkhordari, A. et al. The influence of PVC and (PVC: SnS) interfacial polymer layers on the electric and dielectric properties of Au/n-Si structure. Silicon 15(2), 855–865 (2023).
Wemple, S. H. & DiDomenico, M. Jr. Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971).
Spitzer, W. G. & Fan, H. Y. Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. 106(5), 882 (1957).
Fang, R. C. Solid Spectroscopy (Chinese Science Technology University Press, 2003).
Zhang, Y. & Shen, W. M. Basic of Solid Electronics (Zhe-Jiang University Press, 2005).
Okoye, C. M. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. J. Phys. Condens. Matter 15(35), 5945 (2003).
Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4(12), 2962–2970 (2017).
Song, B. et al. Complex optical conductivity of two-dimensional MOS2: A striking layer dependency. J. Phys. Chem. Lett. 10(20), 6246–6252 (2019).