Uncategorized

Performance of machine learning algorithms in spectroscopic ellipsometry data analysis of ZnTiO3 nanocomposite



  • Naifar, A., Zeiri, N., Nasrallah, S. A. & Said, M. Linear and nonlinear optical properties of CdSe/ZnTe core/shell spherical quantum dots embedded in different dielectric matrices. Photonics Nanostruct. Fundam. Appl. 40, 100789 (2020).


    Google Scholar
     

  • Piotrowski, P. & Pacuski, W. Photoluminescence of CdTe quantum wells doped with cobalt and iron. J. Lumin. 1(221), 117047 (2020).


    Google Scholar
     

  • Azizian-Kalandaragh, Y., Sedaghatdoust-Bodagh, F. & Habibi-Yangjeh, A. Ultrasound-assisted preparation and characterization of β-Bi2O3 nanostructures: Exploring the photocatalytic activity against rhodamine B. Superlattices Microstruct. 1(81), 151–160 (2015).

    ADS 

    Google Scholar
     

  • Zhao, X., Yang, H., Cui, Z., Li, R. & Feng, W. Enhanced photocatalytic performance of Ag–Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method. Mater. Technol. 32(14), 870–880 (2017).

    ADS 

    Google Scholar
     

  • Afroz, K., Moniruddin, M., Bakranov, N., Kudaibergenov, S. & Nuraje, N. A heterojunction strategy to improve the visible light-sensitive water-splitting performance of photocatalytic materials. J. Mater. Chem. A 6(44), 21696–21718 (2018).

    CAS 

    Google Scholar
     

  • Pirgholi-Givi, G., Azizian-Kalandaragh, Y. & Farazin, J. Comparison of the photocatalytic activity of perovskite structures: Bismuth, barium, and zinc titanate nanostructures for photodegradation of methylene blue from water. J. Photochem. Photobiol. A 1(408), 113104 (2021).


    Google Scholar
     

  • Maeda, K. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6(3), 2167–2173 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kulkarni, A. et al. Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells. Int. J. Hydrogen Energy 37(24), 19092–19102 (2012).

    CAS 

    Google Scholar
     

  • Singh, P., Kumar, A. & Kaur, D. ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapor deposition. Opt. Mater. 30(8), 1316–1322 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Singh, P., Kumar, A. & Kaur, D. Substrate effect on texture properties of nanocrystalline TiO2 thin films. Physica B 403(19–20), 3769–3773 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, N. et al. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Mater. Lett. 62(21–22), 3691–3693 (2008).

    CAS 

    Google Scholar
     

  • Rao, B. B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater. Chem. Phys. 64(1), 62–65 (2000).

    CAS 

    Google Scholar
     

  • Yoshino, Y., Makino, T., Katayama, Y. & Hata, T. Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering. Vacuum 59(2–3), 538–545 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Jäger, S., Szyszka, B., Szczyrbowski, J. & Bräuer, G. Comparison of transparent conductive oxide thin films prepared by ac and dc reactive magnetron sputtering. Surf. Coat. Technol. 98(1–3), 1304–1314 (1998).


    Google Scholar
     

  • Birkmire, R. W. & Eser, E. Polycrystalline thin film solar cells: present status and future potential. Annu. Rev. Mater. Sci. 27(1), 625–653 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Look, D. C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80(1–3), 383–387 (2001).


    Google Scholar
     

  • Bodade, A. B., Bende, A. M. & Chaudhari, G. N. Synthesis and characterization of CdO-doped nanocrystalline ZnO: TiO2-based H2S gas sensor. Vacuum 82(6), 588–593 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X., Zhang, F. & Chan, K. Y. The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties. Mater. Chem. Phys. 97(2–3), 384–389 (2006).

    CAS 

    Google Scholar
     

  • Ke, S., Cheng, X., Wang, Q., Wang, Y. & Pan, Z. Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles. Ceram. Int. 40(6), 8891–8895 (2014).

    CAS 

    Google Scholar
     

  • Salavati-Niasari, M. et al. Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 27(5), 2066–2075 (2016).

    CAS 

    Google Scholar
     

  • Lee, Y. C. & Chen, P. S. Effect of Cu dopant on microstructure and phase transformation of ZnTiO3 thin films prepared by radio frequency magnetron sputtering. Thin Solid Films 520(7), 2672–2678 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Li, Z. X., Shi, F. B., Ding, Y., Zhang, T. & Yan, C. H. Facile synthesis of highly ordered mesoporous ZnTiO3 with crystalline walls by self-adjusting method. Langmuir 27(23), 14589–14593 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, S. P., Luo, J. H. & Cao, S. X. Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol–gel technique. J. Alloys Compd. 502(1), 147–152 (2010).

    CAS 

    Google Scholar
     

  • Zhang, P. et al. Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers: A 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity. J. Hazard. Mater. 30(217), 422–428 (2012).


    Google Scholar
     

  • Wang, L., Kang, H., Xue, D. & Liu, C. Low-temperature synthesis of ZnTiO3 nanopowders. J. Cryst. Growth 311(3), 611–614 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Zhao, L., Liu, F., Wang, X., Zhang, Z. & Yan, J. Preparation and characterizations of ZnTiO3 powders by sol–gel process. J. Sol-Gel Sci. Technol. 33, 103–106 (2005).

    CAS 

    Google Scholar
     

  • Liu, X. Molten salt synthesis of ZnTiO3 powders with around 100 nm grain size crystalline morphology. Mater. Lett. 1(80), 69–71 (2012).


    Google Scholar
     

  • Yu, Y. H. & Xia, M. Preparation and characterization of ZnTiO3 powders by sol–gel process. Mater. Lett. 15(77), 10–12 (2012).


    Google Scholar
     

  • Chang, Y. S. et al. Synthesis, formation and characterization of ZnTiO3 ceramics. Ceram. Int. 30(8), 2183–2189 (2004).

    CAS 

    Google Scholar
     

  • Bobowska, I., Opasińska, A., Wypych, A. & Wojciechowski, P. Synthesis and dielectric investigations of ZnTiO3 obtained by a soft chemistry route. Mater. Chem. Phys. 134(1), 87–92 (2012).

    CAS 

    Google Scholar
     

  • Pal, N., Paul, M. & Bhaumik, A. New mesoporous perovskite ZnTiO3 and its excellent catalytic activity in liquid phase organic transformations. Appl. Catal. A Gen. 393(1–2), 153–160 (2011).

    CAS 

    Google Scholar
     

  • Sharma, M. & Tripathi, S. K. Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA: n-ZnSe Schottky barrier diodes. Mater. Sci. Semicond. Process. 1(41), 155–161 (2016).


    Google Scholar
     

  • Erbilen Tanrıkulu, E., Altındal, Ş & Azizian-Kalandaragh, Y. Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. J. Mater. Sci. Mater. Electron. 29(14), 11801–11811 (2018).


    Google Scholar
     

  • Altındal, Ş et al. A comparison of electrical characteristics of Au/n-Si (MS) structures with PVC and (PVC: Sm2O3) polymer interlayer. Phys. Scr. 96(12), 125838 (2021).

    ADS 

    Google Scholar
     

  • Koczkur, K. M., Mourdikoudis, S., Polavarapu, L. & Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Samuel, A. L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959).

    MathSciNet 

    Google Scholar
     

  • Vapnik, V. The Nature of Statistical Learning Theory (Springer, 1999).


    Google Scholar
     

  • Barkhordari, A. et al. The effect of PVP: BaTiO3 interlayer on the conduction mechanism and electrical properties at MPS structures. Phys. Scr. 96(8), 085805 (2021).

    ADS 

    Google Scholar
     

  • Baran, E. J. & Botto, I. L. Die Raman-Spektren von ZnTiO3 und CdTiO3. Zeitschrift für anorganische und allgemeine Chemie 448(1), 188–192 (1979).

    CAS 

    Google Scholar
     

  • Hurma, T. & Kose, S. XRD Raman analysis and optical properties of CuS nanostructured film. Optik 127(15), 6000–6006 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Last, J. T. Infrared-absorption studies on barium titanate and related materials. Phys. Rev. 105(6), 1740 (1957).

    ADS 
    CAS 

    Google Scholar
     

  • Nolan, N. T., Seery, M. K. & Pillai, S. C. Crystallization and phase-transition characteristics of sol–gel-synthesized zinc titanates. Chem. Mater. 23(6), 1496–1504 (2011).

    CAS 

    Google Scholar
     

  • Lindon, J. C., Tranter, G. E. & Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry (Academic Press, 2016).


    Google Scholar
     

  • Reitz, J. R., Milford, F. J. & Christy, R. W. Foundations of Electromagnetic Theory 4th edn. (Addison-Wesley, 1993).


    Google Scholar
     

  • Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).


    Google Scholar
     

  • Isik, M., Gasanly, N. M. & Turan, R. Spectroscopic ellipsometry study of above-band gap optical constants of layered structured TlGaSe2, TlGaS2 and TlInS2 single crystals. Phys. B Condens. Matter 407(21), 4193–4197 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Kock, I., Edler, T. & Mayr, S. G. Growth behavior and intrinsic properties of vapor-deposited iron palladium thin films. J. Appl. Phys. 103(4), 528–587 (2008).


    Google Scholar
     

  • Pakizeh, E. Electronic and optical properties of ZnCl4H2Me2biim polymeric complexes (DFT study). J. Green Polym. 1(1), 6–10 (2023).


    Google Scholar
     

  • Pakizeh, E. Optical response and structural properties of Fe-doped Pb (Zr0.52Ti0.48) O3 nanopowders. J. Mater. Sci. Mater. Electron. 31(6), 4872–4881 (2020).

    CAS 

    Google Scholar
     

  • Pakizeh, E., Mohammadi, M. & Mostafaei, A. Effect of Hydrogen concentration on the structural, electronic and optical properties of 2D monolayer MXenes: DFT study. Solid State Commun. 1(369), 115214 (2023).


    Google Scholar
     

  • Pakizeh, E., Jalilian, J. & Mohammadi, M. Electronic, optical and thermoelectric properties of Fe 2 ZrP compound determined via first-principles calculations. RSC Adv. 9(44), 25900–25911 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, M. Optical Properties of Solids (Oxford University Press, 2001).


    Google Scholar
     

  • Barkhordari, A., Mashayekhi, H. R., Amiri, P., Altındal, Ş & Azizian-Kalandaragh, Y. Role of graphene nanoparticles on the electrophysical processes in PVP and PVP: ZnTiO3 polymer layers at Schottky diode (SD). Semicond. Sci. Technol. 38(7), 075002 (2023).

    ADS 

    Google Scholar
     

  • Adachi, S., Adachi, S. The Interband Transition Region: Amorphous and Microcrystalline Materials. Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles. 1999;131–177.

  • Barkhordari, A. et al. The influence of PVC and (PVC: SnS) interfacial polymer layers on the electric and dielectric properties of Au/n-Si structure. Silicon 15(2), 855–865 (2023).

    CAS 

    Google Scholar
     

  • Wemple, S. H. & DiDomenico, M. Jr. Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971).

    ADS 

    Google Scholar
     

  • Spitzer, W. G. & Fan, H. Y. Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. 106(5), 882 (1957).

    ADS 
    CAS 

    Google Scholar
     

  • Fang, R. C. Solid Spectroscopy (Chinese Science Technology University Press, 2003).


    Google Scholar
     

  • Zhang, Y. & Shen, W. M. Basic of Solid Electronics (Zhe-Jiang University Press, 2005).


    Google Scholar
     

  • Okoye, C. M. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. J. Phys. Condens. Matter 15(35), 5945 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4(12), 2962–2970 (2017).

    CAS 

    Google Scholar
     

  • Song, B. et al. Complex optical conductivity of two-dimensional MOS2: A striking layer dependency. J. Phys. Chem. Lett. 10(20), 6246–6252 (2019).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *