Uncategorized

Modeling based on machine learning to investigate flue gas desulfurization performance by calcium silicate absorbent in a sand bed reactor



  • Li, C. et al. India Is overtaking china as the world’s largest emitter of anthropogenic sulfur dioxide. Sci. Rep. 7(1), 14304 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koukouli, M. E. et al. Anthropogenic sulphur dioxide load over China as observed from different satellite sensors. Atmos. Environ. 145, 45–59 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wakefield J. A toxicological review of the products of combustion. Health Protection Agency, Centre for Radiation, Chemical and Environmental…; 2010.

  • Hu, Y. et al. Optimization and evaluation of SO2 emissions based on WRF-Chem and 3DVAR data assimilation. Remote Sensing 14(1), 220 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, F. & Fan, Y. Determination of the influence of fuel switching regulation on the sulfur dioxide content of air in a port area using DID MODEL. Adv. Meteorol. 2021, 6679682 (2021).

    Article 

    Google Scholar
     

  • Lavery, C. B., Marrugo-Hernandez, J. J., Sui, R., Dowling, N. I. & Marriott, R. A. The effect of methanol in the first catalytic converter of the Claus sulfur recovery unit. Fuel 238, 385–393 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Kobayashi, N. & Hu, Y. The activated coke preparation for SO2 adsorption by using flue gas from coal power plant. Chem. Eng. Process. Process Intensif. 47(1), 118–127 (2008).

    Article 

    Google Scholar
     

  • Yang, C. et al. Characterization of chemical fingerprints of ultralow sulfur fuel oils using gas chromatography-quadrupole time-of-flight mass spectrometry. Fuel 343, 127948 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kaminski, J. Technologies and costs of SO2-emissions reduction for the energy sector. Appl. Energy 75(3), 165–172 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duan, Y., Duan, L., Wang, J. & Anthony, E. J. Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed. Fuel 242, 374–381 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ma, X., Kaneko, T., Xu, G. & Kato, K. Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder–particle spouted bed. Fuel 80(5), 673–680 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gound, T. U., Ramachandran, V. & Kulkarni, S. Various methods to reduce SO2 emission-a review. Int. J. Ethics Eng. Manage. Educ. 1(1), 1–6 (2014).


    Google Scholar
     

  • Córdoba, P. Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel 144, 274–286 (2015).

    Article 

    Google Scholar
     

  • Suárez-Ruiz, I. & Ward, C. R. Chapter 4: Coal combustion. In Applied coal petrology (eds Suárez-Ruiz, I. & Crelling, J. C.) 85–117 (Elsevier, 2008).

    Chapter 

    Google Scholar
     

  • Ren, Y. et al. Sulfur trioxide emissions from coal-fired power plants in China and implications on future control. Fuel 261, 116438 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hall, B. W., Singer, C., Jozewicz, W., Sedman, C. B. & Maxwell, M. A. Current status of the ADVACATE process for flue gas desulfurization. J. Air Waste Manage. Assoc. 42(1), 103–110 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Arthur LF. Silicate sorbents for flue gas cleaning. The University of Texas at Austin; 1998.

  • Dzhonova, D., Razkazova-Velkova, E., Ljutzkanov, L., Kolev, N. & Kolev, D. Energy efficient SO2 removal from flue gases using the method of Wellman-Lord. J. Chem. Technol. Metall. 48, 457–464 (2013).


    Google Scholar
     

  • Özyuğuran A, Mericboyu A. Using Hydrated Lime and Dolomite for Sulfur Dioxide Removal from Flue Gases. 2012.

  • Xu, X.-J. et al. Simultaneous removal of NOX and SO2 from flue gas in an integrated FGD-CABR system by sulfur cycling-mediated Fe (II) EDTA regeneration. Environ. Res. 205, 112541 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanienda-Pilecki, K. J. The use of limestones built of carbonate phases with increased Mg content in processes of flue gas desulfurization. Minerals 11(10), 1044 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fedorchenko I, Oliinyk A, Fedoronchak T, Zaiko T, Kharchenko A. The development of a genetic method to optimize the flue gas desulfurization process. MoMLeT+ DS. 2021:161–73.

  • Tadepalli, A., Pujari, K. N. & Mitra, K. A crystallization case study toward optimization of expensive to evaluate mathematical models using Bayesian approach. Mater. Manufact. Process. 38(16), 2127–2134 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Application of machine learning methods for estimating and comparing the sulfur dioxide absorption capacity of a variety of deep eutectic solvents. J. Clean. Product. 363, 132465 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Grimaccia, F., Montini, M., Niccolai, A., Taddei, S. & Trimarchi, S. A machine learning-based method for modelling a proprietary SO2 removal system in the oil and gas sector. Energies 15(23), 9138 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xie Y, Chi T, Yu Z, Chen X. SO2 prediction for wet flue gas desulfurization based on improved long and short-term memory. In: 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2022, pp. 321–5

  • Yu, H., Gao, M., Zhang, H. & Chen, Y. Dynamic modeling for SO2-NOx emission concentration of circulating fluidized bed units based on quantum genetic algorithm: Extreme learning machine. J. Clean. Product. 324, 129170 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yin, X. et al. Enhancing deep learning for the comprehensive forecast model in flue gas desulfurization systems. Control Eng. Pract. 138, 105587 (2023).

    Article 

    Google Scholar
     

  • Makomere, R., Rutto, H., Koech, L. & Banza, M. The use of artificial neural network (ANN) in dry flue gas desulphurization modelling: Levenberg–Marquardt (LM) and Bayesian regularization (BR) algorithm comparison. Canad. J. Chem. Eng. 101(6), 3273–3286 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Uddin, G. M. et al. Artificial intelligence-based emission reduction strategy for limestone forced oxidation flue gas desulfurization system. J. Energy Resour. Technol. 142(9), 092103 (2020).

    Article 

    Google Scholar
     

  • Adams, D., Oh, D., Kim, D. & Lee, C. Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine. J. Clean. Product. 270, 122310 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zurada J. Introduction to artificial neural systems. West Publishing Co.; 1992.

  • Agatonovic-Kustrin, S. & Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharmaceut. Biomed. Anal. 22(5), 717–727 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Naderi K, Foroughi A, Ghaemi A. Analysis of hydraulic performance in a structured packing column for air/water system: RSM and ANN modeling. Chem. Eng. Process. Process Intensif. 2023:109521.

  • Khoshraftar, Z. & Ghaemi, A. Modeling and prediction of CO2 partial pressure in methanol solution using artificial neural networks. Curr. Res. Green Sustain. Chem. 6, 100364 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ghaemi, A., Karimi Dehnavi, M. & Khoshraftar, Z. Exploring artificial neural network approach and RSM modeling in the prediction of CO2 capture using carbon molecular sieves. Case Stud. Chem. Environ. Eng. 7, 100310 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zafari, P. & Ghaemi, A. Modeling and optimization of CO2 capture into mixed MEA-PZ amine solutions using machine learning based on ANN and RSM models. Results Eng. 19, 101279 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kashaninejad, M., Dehghani, A. A. & Kashiri, M. Modeling of wheat soaking using two artificial neural networks (MLP and RBF). J. Food Eng. 91(4), 602–607 (2009).

    Article 

    Google Scholar
     

  • Leite, M. S. et al. Modeling of milk lactose removal by column adsorption using artificial neural networks: Mlp and Rbf. Chem. Ind. Chem. Eng. Quart. 25(4), 369–382 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sharif, A. A. Chapter 7: Numerical modeling and simulation. In Numerical models for submerged breakwaters (ed. Sharif Ahmadian, A.) 109–126 (Butterworth-Heinemann, 2016).

    Chapter 

    Google Scholar
     

  • Hemmati, A., Ghaemi, A. & Asadollahzadeh, M. RSM and ANN modeling of hold up, slip, and characteristic velocities in standard systems using pulsed disc-and-doughnut contactor column. Sep. Sci. Technol. 56(16), 2734–2749 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Torkashvand, A., Ramezanipour Penchah, H. & Ghaemi, A. Exploring of CO2 adsorption behavior by Carbazole-based hypercrosslinked polymeric adsorbent using deep learning and response surface methodology. Int. J. Environ. Sci. Technol. 19(9), 8835–8856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Speiser, J. L., Miller, M. E., Tooze, J. & Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Exp. Syst. Appl. 134, 93–101 (2019).

    Article 

    Google Scholar
     

  • Cano, G. et al. Automatic selection of molecular descriptors using random forest: Application to drug discovery. Exp. Syst. Appl. 72, 151–159 (2017).

    Article 

    Google Scholar
     

  • Chehreh Chelgani, S., Matin, S. S. & Hower, J. C. Explaining relationships between coke quality index and coal properties by Random Forest method. Fuel 182, 754–760 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. et al. Predicting the salt adsorption capacity of different capacitive deionization electrodes using random forest. Desalination 537, 115826 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ghazwani, M. & Begum, M. Y. Computational intelligence modeling of hyoscine drug solubility and solvent density in supercritical processing: Gradient boosting, extra trees, and random forest models. Sci. Rep. 13(1), 10046 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hameed, M. M., AlOmar, M. K., Khaleel, F. & Al-Ansari, N. An extra tree regression model for discharge coefficient prediction: Novel, practical applications in the hydraulic sector and future research directions. Math. Problem. Eng. 2021, 7001710 (2021).


    Google Scholar
     

  • Ahmad, M. W., Reynolds, J. & Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. J. Clean. Product. 203, 810–821 (2018).

    Article 

    Google Scholar
     

  • Aftab, R. A. et al. Support vector regression-based model for phenol adsorption in rotating packed bed adsorber. Environ. Sci. Pollut. Res. 30(28), 71637–71648 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kooh, M. R. R., Thotagamuge, R., Chou Chau, Y.-F., Mahadi, A. H. & Lim, C. M. Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue. J. Taiwan Inst. Chem. Eng. 132, 104134 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Song, Z., Shi, H., Zhang, X. & Zhou, T. Prediction of CO2 solubility in ionic liquids using machine learning methods. Chem. Eng. Sci. 223, 115752 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khoshraftar, Z. & Ghaemi, A. Modeling of CO2 solubility in piperazine (PZ) and diethanolamine (DEA) solution via machine learning approach and response surface methodology. Case Stud. Chem. Environ. Eng. 8, 100457 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Belyadi, H. & Haghighat, A. Chapter 5—Supervised learning. In Machine learning guide for oil and gas using python (eds Belyadi, H. & Haghighat, A.) 169–295 (Gulf Professional Publishing, 2021).

    Chapter 

    Google Scholar
     

  • Fathalian, F., Aarabi, S., Ghaemi, A. & Hemmati, A. Intelligent prediction models based on machine learning for CO2 capture performance by graphene oxide-based adsorbents. Sci. Rep. 12(1), 21507 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pujari, K. N., Miriyala, S. S., Mittal, P. & Mitra, K. Better wind forecasting using evolutionary neural architecture search driven green deep learning. Exp. Syst. Appl. 214, 119063 (2023).

    Article 

    Google Scholar
     

  • Inapakurthi, R. K., Naik, S. S. & Mitra, K. Toward faster operational optimization of cascaded MSMPR crystallizers using multiobjective support vector regression. Indu. Eng. Chem. Res. 61(31), 11518–11533 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Miriyala, S. S., Pujari, K. N., Naik, S. & Mitra, K. Evolutionary neural architecture search for surrogate models to enable optimization of industrial continuous crystallization process. Powder Technol. 405, 117527 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Miriyala, S. S., Mittal, P., Majumdar, S. & Mitra, K. Comparative study of surrogate approaches while optimizing computationally expensive reaction networks. Chem. Eng. Sci. 140, 44–61 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, S. & Jiang, Y. Statistical research on effect of desulfurated parameters on desulfurization efficiency. IOP Confer. Ser. Earth Environ. Sci. 146(1), 012070 (2018).

    Article 

    Google Scholar
     

  • Elder, A. C., Bhattacharyya, S., Nair, S. & Orlando, T. M. Reactive Adsorption of Humid SO2 on metal-organic framework nanosheets. J. Phys. Chem. C 122(19), 10413–10422 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chu, C.-Y., Hsueh, K.-W. & Hwang, S.-J. Sulfation and attrition of calcium sorbent in a bubbling fluidized bed. J. Hazardous Mater. 80(1), 119–133 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C.-F., Shih, S.-M. & Lin, R.-B. Effect of Ca(OH)2/fly ash weight ratio on the kinetics of the reaction of Ca(OH)2/fly ash sorbents with SO2 at low temperatures. Chem. Eng. Sci. 59(21), 4653–4655 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Izquierdo, J. F., Fité, C., Cunill, F., Iborra, M. & Tejero, J. Kinetic study of the reaction between sulfur dioxide and calcium hydroxide at low temperature in a fixed-bed reactor. J. Hazardous Mater. 76, 113–123 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Chisholm, P. N. & Rochelle, G. T. Absorption of HCl and SO2 from humidified flue gas with calcium silicate solids. Ind. Eng. Chem. Res. 39(4), 1048–1060 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y., Han, Y. & Chen, C. Simultaneous removal of SO2 and NO from flue gas using multicomposite active absorbent. Ind. Eng. Chem. Res. 51(1), 480–486 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Fei, T. & Zhang, L. SO2 absorption by multiple biomass ash types. ACS Omega 6(3), 1872–1882 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inapakurthi, R. K., Miriyala, S. S. & Mitra, K. Deep learning based dynamic behavior modelling and prediction of particulate matter in air. Chem. Eng. J. 426, 131221 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, et al. Global sensitivity analysis. The Primer. 2008.



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *