Uncategorized

Mathematical discoveries from program search with large language models



  • Bang, Y. et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. Preprint at https://arxiv.org/abs/2302.04023 (2023).

  • Borji, A. A. categorical archive of ChatGPT failures. Preprint at https://arxiv.org/abs/2302.03494 (2023).

  • Lehman, J. et al. in Handbook of Evolutionary Machine Learning (eds Banzhaf, W. et al.) 331–366 (Springer, 2023).

  • Chen, M. et al. Evaluating large language models trained on code. Preprint at https://arxiv.org/abs/2107.03374 (2021).

  • Austin, J. et al. Program synthesis with large language models. Preprint at https://arxiv.org/abs/2108.07732 (2021).

  • Li, R. et al. StarCoder: may the source be with you! Preprint at https://arxiv.org/abs/2305.06161 (2023).

  • Fried, D. et al. Incoder: a generative model for code infilling and synthesis. In Proc. International Conference on Learning Representations (2022).

  • Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn program synthesis. In Proc. International Conference on Learning Representations (2022).

  • Chen, X., Lin, M., Schärli, N. & Zhou, D. Teaching large language models to self-debug. Preprint at https://arxiv.org/abs/2304.05128 (2023).

  • Liventsev, V., Grishina, A., Härmä, A. & Moonen, L. Fully autonomous programming with large language models. Preprint at https://arxiv.org/abs/2304.10423 (2023).

  • Li, Y. et al. Competition-level code generation with alphacode. Science 378, 1092–1097 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zelikman, E., Huang, Q., Poesia, G., Goodman, N. D. & Haber, N. Parsel: a (de-) compositional framework for algorithmic reasoning with language models. Preprint at https://arxiv.org/abs/2212.10561 (2023).

  • Madaan, A. et al. Learning performance-improving code edits. Preprint at https://arxiv.org/abs/2302.07867 (2023).

  • Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

  • Koza, J. R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4, 87–112 (1994).

    Article 

    Google Scholar
     

  • Meyerson, E. et al. Language model crossover: variation through few-shot prompting. Preprint at https://arxiv.org/abs/2302.12170 (2023).

  • Chen, A., Dohan, D. M. & So, D. R. EvoPrompting: language models for code-level neural architecture search. Preprint at https://arxiv.org/abs/2302.14838 (2023).

  • Zheng, M. et al. Can GPT-4 perform neural architecture search? Preprint at https://arxiv.org/abs/2304.10970 (2023).

  • Nasir, M. U., Earle, S., Togelius, J., James, S. & Cleghorn, C. LLMatic: neural architecture search via large language models and quality-diversity optimization. Preprint at https://arxiv.org/abs/2306.01102 (2023).

  • Haluptzok, P., Bowers, M. & Kalai, A. T. Language models can teach themselves to program better. In International Conference on Learning Representations (2023).

  • Grochow, J. New applications of the polynomial method: the cap set conjecture and beyond. Bull. Am. Math. Soc. 56, 29–64 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Tao, T. & Vu, V. H. Additive Combinatorics Vol. 105 (Cambridge Univ. Press, 2006).

  • Beasley, J. E. OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072 (1990).

  • Castiñeiras, I., De Cauwer, M. & O’Sullivan, B. Weibull-based benchmarks for bin packing. In Proc. International Conference on Principles and Practice of Constraint Programming 207–222 (Springer, 2012).

  • Anil, R. et al. Palm 2 technical report. Preprint at https://arxiv.org/abs/2305.10403 (2023).

  • Code models overview. Vertex AI, Google Cloud https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview (2023).

  • Tanese, R. Distributed Genetic Algorithms for Function Optimization. PhD thesis, Univ. Michigan (1989).

  • Cantú-Paz, E. A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systemes Repartis 10, 141–171 (1998).


    Google Scholar
     

  • Tao, T. Open question: best bounds for cap sets. WordPress Blog https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/ (2009).

  • Croot, E., Lev, V. F. & Pach, P. P. Progression-free sets in are exponentially small. Ann. Math. 185, 331–337 (2017).

  • Ellenberg, J. S., Gijswijt, D. On large subsets of \({F}_{q}^{n}\) with no three-term arithmetic progression. Ann. Math. 185, 339–343 (2017).

  • Naslund, E. & Sawin, W. Upper bounds for sunflower-free sets. Forum Math. Sigma 5, e15 (2017).

  • Edel, Y. & Bierbrauer, J. Large caps in small spaces. Des. Codes Cryptogr. 23, 197–212 (2001).

    Article 
    MathSciNet 

    Google Scholar
     

  • Edel, Y. Extensions of generalized product caps. Des. Codes Cryptogr. 31, 5–14 (2004).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hill, R. On the largest size of cap in S5,3. Rend Lincei. Sci. Fis. Mat. Nat. 54, 378–384 (1973).

    MathSciNet 

    Google Scholar
     

  • Cameron, P. J. & Van Lint, J. H. Designs, Graphs, Codes and Their Links Vol. 3 (Cambridge Univ. Press, 1991).

  • Calderbank, A. R. & Fishburn, P. C. Maximal three-independent subsets of {0, 1, 2} n. Des. Codes Cryptogr. 4, 203–211 (1994).

    Article 
    MathSciNet 

    Google Scholar
     

  • Tyrrell, F. New lower bounds for cap sets. Discrete Analysis https://doi.org/10.19086/da.91076 (2023).

  • Coffman, E. G., Garey, M. R. & Johnson, D. S. in Algorithm Design for Computer System Design (eds Ausiello, G. et al.) 49–106 (Springer, 1984).

  • Lee, C. C. & Lee, D. T. A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ramanan, P., Brown, D. J., Lee, C.-C. & Lee, D.-T. On-line bin packing in linear time. J. Algorithm. 10, 305–326 (1989).

    Article 
    MathSciNet 

    Google Scholar
     

  • Seiden, S. S. On the online bin packing problem. J. ACM 49, 640–671 (2002).

    Article 
    MathSciNet 

    Google Scholar
     

  • Balogh, J., Békési, J., Dósa, G., Sgall, J. & Stee, R. V. The optimal absolute ratio for online bin packing. In Proc. Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM (ed. Chekuri, C.) 1425–1438 (SIAM, 2014).

  • Balogh, J., Békési, J., Dósa, G., Epstein, L. & Levin, A. A new and improved algorithm for online bin packing. In Proc. 26th Annual European Symposium on Algorithms (ESA 2018) 5:1–5:14 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018).

  • Coffman, E. G., Csirik, J., Galambos, G., Martello, S. & Vigo, D. in Handbook of Combinatorial Optimization (eds Pardalos, P. M. et al.) 455–531 (Springer, 2013).

  • Martello, S. & Toth, P. Lower bounds and reduction procedures for the bin packing problem. Discrete Appl. Math. 28, 59–70 (1990).

    Article 
    MathSciNet 

    Google Scholar
     

  • Angelopoulos, S., Kamali, S. & Shadkami, K. Online bin packing with predictions. J. Artif. Intell. Res. 36, 4574–4580 (2022).

  • Chaitin, G. J. On the length of programs for computing finite binary sequences. J. ACM 13, 547–569 (1966).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, M. et al. An Introduction to Kolmogorov Complexity and its Applications Vol. 3 (Springer, 2008).

  • Solomonoff, R. J. A formal theory of inductive inference. Part I. Inf. Control 7, 1–22 (1964).

    Article 
    MathSciNet 

    Google Scholar
     

  • O’Neill, M., Vanneschi, L., Gustafson, S. & Banzhaf, W. Open issues in genetic programming. Genet. Program. Evolvable Mach. 11, 339–363 (2010).

    Article 

    Google Scholar
     

  • Polu, S. & Sutskever, I. Generative language modeling for automated theorem proving. Preprint at https://arxiv.org/abs/2009.03393 (2020).

  • Polu, S. et al. Formal mathematics statement curriculum learning. In International Conference on Learning Representations (2023).

  • Jiang, A. Q. et al. THOR: wielding hammers to integrate language models and automated theorem provers. Adv. Neural Info. Process. Syst. 35, 8360–8373 (2022).


    Google Scholar
     

  • Mouret, J.-B. & Doncieux, S. Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In Proc. 2009 IEEE Congress on Evolutionary Computation 1161–1168 (IEEE, 2009).

  • Pugh, J. K., Soros, L. B. & Stanley, K. O. Quality diversity: a new frontier for evolutionary computation. Front. Robotics AI 3, 40 (2016).

    Article 

    Google Scholar
     

  • Helmuth, T., Spector, L. & Matheson, J. Solving uncompromising problems with lexicase selection. IEEE Trans. Evol. Comput. 19, 630–643 (2015).

    Article 

    Google Scholar
     

  • Hutter, M. & Legg, S. Fitness uniform optimization. IEEE Trans. Evol. Comput. 10, 568–589 (2006).

    Article 

    Google Scholar
     

  • de la Maza, M. An analysis of selection procedures with particular attention paid to proportional and Boltzmann selection. In Proc. Fifth International Conference on Genetic Algorithms (Morgan Kaufmann, 1993).

  • OpenAI, GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).

  • Millidge, B. Scaffolded LLMs as natural language computers. Beren’s Blog https://www.beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers (2023).

  • Schick, T. et al. Toolformer: language models can teach themselves to use tools. Preprint at https://arxiv.org/abs/2302.04761 (2023).

  • Park, J. S. et al. Generative agents: interactive simulacra of human behavior. In Proc. 36th Annual ACM Symposium on User Interface Software and Technology1–22 (ACM, 2023).

  • Wu, J. et al. Recursively summarizing books with human feedback. Preprint at https://arxiv.org/abs/2109.10862 (2021).

  • Nye, M. et al. Show your work: scratchpads for intermediate computation with language models. In Deep Learning for Code Workshop, International Conference on Learning Representations (2022).

  • Yao, S. et al. ReAct: dynergizing reasoning and acting in language models. In Proc. International Conference on Learning Representations (2023).

  • Zelikman, E., Wu, Y., Mu, J. & Goodman, N. Star: bootstrapping reasoning with reasoning. Adv. Neural Info. Process. Syst. 35, 15476–15488 (2022).


    Google Scholar
     

  • Wang, G. et al. Voyager: an open-ended embodied agent with large language models. Preprint at https://arxiv.org/abs/2305.16291 (2023).

  • Yin, P. et al. Natural language to code generation in interactive data science notebooks. Preprint at https://arxiv.org/abs/2212.09248 (2022).

  • Ni, A. et al. Lever: learning to verify language-to-code generation with execution. In Proc. International Conference on Machine Learning 26106–26128 (PMLR, 2023).

  • Zhou, S., Alon, U., Xu, F. F., Jiang, Z. & Neubig, G. Docprompting: generating code by retrieving the docs. In Proc. International Conference on Learning Representations (2022).

  • Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic Programming: An Introduction: On The Automatic Evolution of Computer Programs and its Applications (Morgan Kaufmann, 1998).

  • Langdon, W. B. & Poli, R. Foundations of Genetic Programming (Springer Science & Business Media, 2013).

  • Ma, H., Narayanaswamy, A., Riley, P. & Li, L. Evolving symbolic density functionals. Sci. Adv. 8, eabq0279 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Symbolic discovery of optimization algorithms. Preprint at https://arxiv.org/abs/2302.06675 (2023).

  • Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs (MIT, 1994).

  • Salustowicz, R. & Schmidhuber, J. Probabilistic incremental program evolution. Evol. Comput. 5, 123–141 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burke, E. et al. in Handbook of Metaheuristics (eds Glover, F. & Kochenberger, G. A.) 457–474 (Springer, 2003).

  • Ross, P. in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (eds Burke, E. K. & Kendall, G.) 529–556 (Springer, 2005).

  • Burke, E. K. et al. Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724 (2013).

    Article 

    Google Scholar
     

  • Burke, E. K., Hyde, M. R. & Kendall, G. Evolving bin packing heuristics with genetic programming. In Proc. International Conference on Parallel Problem Solving from Nature 860–869 (Springer, 2006).

  • Burke, E. K., Hyde, M. R., Kendall, G. & Woodward, J. Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In Proc. 9th Annual Conference on Genetic and Evolutionary Computation 1559–1565 (ACM, 2007).

  • Burke, E. K., Hyde, M. R. & Kendall, G. Providing a memory mechanism to enhance the evolutionary design of heuristics. In Proc. IEEE Congress on Evolutionary Computation 1–8 (IEEE, 2010).

  • Burke, E. K., Hyde, M., Kendall, G. & Woodward, J. R. The scalability of evolved on line bin packing heuristics. In Proc. 2007 IEEE Congress on Evolutionary Computation 2530–2537 (IEEE, 2007).

  • Bunel, R., Desmaison, A., Kohli, P., Torr, P. H. & Kumar, M. P. Learning to superoptimize programs. In Proc. International Conference on Learning Representations (2017).

  • Schkufza, E., Sharma, R. & Aiken, A. Stochastic superoptimization. ACM SIGARCH Comp. Archit. News 41, 305–316 (2013).

    Article 

    Google Scholar
     

  • Shypula, A. et al. Learning to superoptimize real-world programs. In Proc. Deep Learning for Code Workshop (ICLR 2022 Workshop) (2022).

  • Fawzi, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mankowitz, D. J. et al. Faster sorting algorithms discovered using deep reinforcement learning. Nature 618, 257–263 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, F. et al. Launchpad: a programming model for distributed machine learning research. Preprint at https://arxiv.org/abs/2106.04516 (2021).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *