Uncategorized

Machine learning prediction of pathological complete response and overall survival of breast cancer patients in an underserved inner-city population


  • Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med (Lausanne). 2017;4:227.

    Article 
    PubMed 

    Google Scholar
     

  • Silber JH, Rosenbaum PR, Ross RN, Reiter JG, Niknam BA, Hill AS, Bongiorno DM, Shah SA, Hochman LL, Even-Shoshan O, et al. Disparities in breast cancer survival by socioeconomic status despite medicare and medicaid insurance. Milbank Q. 2018;96(4):706–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yedjou CG, Sims JN, Miele L, Noubissi F, Lowe L, Fonseca DD, Alo RA, Payton M, Tchounwou PB. Health and racial disparity in breast cancer. Adv Exp Med Biol. 2019;1152:31–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park S, Koo JS, Kim MS, Park HS, Lee JS, Lee JS, Kim SI, Park BW. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast. 2012;21(1):50–7.

    Article 
    PubMed 

    Google Scholar
     

  • Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, Sotiriou C. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14(16):5158–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong X, Liu Z, Cheng R, Sun L, Huang S, Fang Y, Wang J. Variation in breast cancer subtype incidence and distribution by race/ethnicity in the United States from 2010 to 2015. JAMA Netw Open. 2020;3(10): e2020303.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aldrighetti CM, Niemierko A, Van Allen E, Willers H, Kamran SC. Racial and ethnic disparities among participants in precision oncology clinical studies. JAMA Netw Open. 2021;4(11): e2133205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deo RC, Nallamothu BK. Learning about machine learning: the promise and pitfalls of big data and the electronic health record. Circ Cardiovasc Qual Outcomes. 2016;9(6):618–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahoro E, Akhloufi MA. Applying deep learning for breast cancer detection in radiology. Curr Oncol. 2022;29(11):8767–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang J, Galal G, Etemadi M, Vaidyanathan M. Evaluation and mitigation of racial bias in clinical machine learning models: scoping review. JMIR Med Inform. 2022;10(5): e36388.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennisi A, Kieber-Emmons T, Makhoul I, Hutchins L. Relevance of pathological complete response after neoadjuvant therapy for breast cancer. Breast Cancer (Auckl). 2016;10:103–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Sahoo S, Lester SC. Pathology of breast carcinomas after neoadjuvant chemotherapy: an overview with recommendations on specimen processing and reporting. Arch Pathol Lab Med. 2009;133(4):633–42.

    Article 
    PubMed 

    Google Scholar
     

  • von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–804.

    Article 

    Google Scholar
     

  • Zhang J, Wu Q, Yin W, Yang L, Xiao B, Wang J, Yao X. Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients. BMC Cancer. 2023;23(1):431.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidman AD, Maues J, Tomlin T, Bhatnagar V, Beaver JA. The evolution of clinical trials in metastatic breast cancer: design features and endpoints that matter. Am Soc Clin Oncol Educ Book. 2020;40:1–11.

    PubMed 

    Google Scholar
     

  • Banu A, Ahmed R, Musleh S, Shah Z, Househ M, Alam T. Predicting overall survival in METABRIC cohort using machine learning. Stud Health Technol Inform. 2023;305:632–5.

    PubMed 

    Google Scholar
     

  • Royer CW, O’Neill M, Wright SJ. A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization. Math Program. 2019;180:451–88.

    Article 

    Google Scholar
     

  • P P: Neural network programming in python. Int J Innov Technol Explor Eng. 2019;8(6s4):373–377.

  • Livingston F. Implementation of Breiman’s random forest machine learning algorithm. ECE591Q Mach Learn. 2005:1–13.

  • Zemel R, Pitassi T. A gradient-based boosting algorithm for regression problems. Neural Inf Process Syst. 2001.

  • Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. TensorFlow: a system for large-scale machine learning. OSDI. 2016;16:265–83.


    Google Scholar
     

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.


    Google Scholar
     

  • Arasu VA, Kim P, Li W, Strand F, McHargue C, Harnish R, Newitt DC, Jones EF, Glymour MM, Kornak J, et al. Predictive value of breast MRI background parenchymal enhancement for neoadjuvant treatment response among HER2− patients. J Breast Imaging. 2020;2(4):352–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chavez-Macgregor M, Litton J, Chen H, Giordano SH, Hudis CA, Wolff AC, Valero V, Hortobagyi GN, Bondy ML, Gonzalez-Angulo AM. Pathologic complete response in breast cancer patients receiving anthracycline- and taxane-based neoadjuvant chemotherapy: evaluating the effect of race/ethnicity. Cancer. 2010;116(17):4168–77.

    Article 
    PubMed 

    Google Scholar
     

  • Dawood S, Broglio K, Kau SW, Green MC, Giordano SH, Meric-Bernstam F, Buchholz TA, Albarracin C, Yang WT, Hennessy BT, et al. Triple receptor-negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J Clin Oncol. 2009;27(2):220–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Killelea BK, Yang VQ, Wang SY, Hayse B, Mougalian S, Horowitz NR, Chagpar AB, Pusztai L, Lannin DR. Racial differences in the use and outcome of neoadjuvant chemotherapy for breast cancer: results from the national cancer data base. J Clin Oncol. 2015;33(36):4267–76.

    Article 
    PubMed 

    Google Scholar
     

  • Llanos AA, Chandwani S, Bandera EV, Hirshfield KM, Lin Y, Ambrosone CB, Demissie K. Associations between sociodemographic and clinicopathological factors and breast cancer subtypes in a population-based study. Cancer Causes Control. 2015;26(12):1737–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma SJ, Serra LM, Yu B, Farrugia MK, Iovoli AJ, Yu H, Yao S, Oladeru OT, Singh AK. Racial/ethnic differences and trends in pathologic complete response following neoadjuvant chemotherapy for breast cancer. Cancers (Basel). 2022;14(3):534.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meti N, Saednia K, Lagree A, Tabbarah S, Mohebpour M, Kiss A, Lu FI, Slodkowska E, Gandhi S, Jerzak KJ, et al. Machine learning frameworks to predict neoadjuvant chemotherapy response in breast cancer using clinical and pathological features. JCO Clin Cancer Inform. 2021;5:66–80.

    Article 
    PubMed 

    Google Scholar
     

  • Rella R, Bufi E, Belli P, Petta F, Serra T, Masiello V, Scrofani AR, Barone R, Orlandi A, Valentini V, et al. Association between background parenchymal enhancement and tumor response in patients with breast cancer receiving neoadjuvant chemotherapy. Diagn Interv Imaging. 2020;101(10):649–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saednia K, Lagree A, Alera MA, Fleshner L, Shiner A, Law E, Law B, Dodington DW, Lu FI, Tran WT, et al. Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies. Sci Rep. 2022;12(1):9690.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarma M, Perimbeti S, Nasir S, Attwood K, Kapoor A, O’Connor T, Early A, Levine EG, Takabe K, Kalinski P, et al. Lack of racial differences in clinical outcomes of breast cancer patients receiving neoadjuvant chemotherapy: a single academic center study. Breast Cancer Res Treat. 2022;192(2):411–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shubeck S, Zhao F, Howard FM, Olopade OI, Huo D. Response to treatment, racial and ethnic disparity, and survival in patients with breast cancer undergoing neoadjuvant chemotherapy in the US. JAMA Netw Open. 2023;6(3): e235834.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terman E, Sheade J, Zhao F, Howard FM, Jaskowiak N, Tseng J, Chen N, Hahn O, Fleming G, Huo D, et al. The impact of race and age on response to neoadjuvant therapy and long-term outcomes in Black and White women with early-stage breast cancer. Breast Cancer Res Treat. 2023;200(1):75–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tichy JR, Deal AM, Anders CK, Reeder-Hayes K, Carey LA. Race, response to chemotherapy, and outcome within clinical breast cancer subtypes. Breast Cancer Res Treat. 2015;150(3):667–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Yee D. I-SPY 2: a neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Curr Breast Cancer Rep. 2019;11(4):303–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warner ET, Ballman KV, Strand C, Boughey JC, Buzdar AU, Carey LA, Sikov WM, Partridge AH. Impact of race, ethnicity, and BMI on achievement of pathologic complete response following neoadjuvant chemotherapy for breast cancer: a pooled analysis of four prospective Alliance clinical trials (A151426). Breast Cancer Res Treat. 2016;159(1):109–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Yang Y, Wei Y, He P, Chen J, Zheng Z, Bu H. Deep learning-based predictive biomarker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer. J Transl Med. 2021;19(1):348.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balmanoukian A, Zhang Z, Jeter S, Slater S, Armstrong DK, Emens LA, Fetting JH, Wolff AC, Davidson NE, Jacobs L, et al. African American women who receive primary anthracycline- and taxane-based chemotherapy for triple-negative breast cancer suffer worse outcomes compared with white women. J Clin Oncol. 2009;27(22):e35-37 (author reply e38-39).

    Article 
    PubMed 

    Google Scholar
     

  • Knisely AT, Michaels AD, Mehaffey JH, Hassinger TE, Krebs ED, Brenin DR, Schroen AT, Showalter SL. Race is associated with completion of neoadjuvant chemotherapy for breast cancer. Surgery. 2018;164(2):195–200.

    Article 
    PubMed 

    Google Scholar
     

  • Griggs JJ, Sorbero ME, Stark AT, Heininger SE, Dick AW. Racial disparity in the dose and dose intensity of breast cancer adjuvant chemotherapy. Breast Cancer Res Treat. 2003;81(1):21–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griggs JJ, Culakova E, Sorbero ME, Poniewierski MS, Wolff DA, Crawford J, Dale DC, Lyman GH. Social and racial differences in selection of breast cancer adjuvant chemotherapy regimens. J Clin Oncol. 2007;25(18):2522–7.

    Article 
    PubMed 

    Google Scholar
     

  • Litvak A, Batukbhai B, Russell SD, Tsai HL, Rosner GL, Jeter SC, Armstrong D, Emens LA, Fetting J, Wolff AC, et al. Racial disparities in the rate of cardiotoxicity of HER2-targeted therapies among women with early breast cancer. Cancer. 2018;124(9):1904–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonard-Murali S, Nathanson SD, Springer K, Baker P, Susick L. Early breast cancer survival of black and white American women with equal diagnostic and therapeutic management. Eur J Surg Oncol. 2023;49(3):583–8.

    Article 
    PubMed 

    Google Scholar
     

  • Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.

    Article 
    PubMed 

    Google Scholar
     

  • Spring L, Greenup R, Niemierko A, Schapira L, Haddad S, Jimenez R, Coopey S, Taghian A, Hughes KS, Isakoff SJ, et al. Pathologic complete response after neoadjuvant chemotherapy and long-term outcomes among young women with breast cancer. J Natl Compr Cancer Netw. 2017;15(10):1216–23.

    Article 

    Google Scholar
     

  • Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. The Lancet. 2014;384(9938):164–72.

    Article 

    Google Scholar
     

  • van Uden DJP, van Maaren MC, Bult P, Strobbe LJA, van der Hoeven JJM, Blanken-Peeters C, Siesling S, de Wilt JHW. Pathologic complete response and overall survival in breast cancer subtypes in stage III inflammatory breast cancer. Breast Cancer Res Treat. 2019;176(1):217–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Symmans WF, Wei C, Gould R, Yu X, Zhang Y, Liu M, Walls A, Bousamra A, Ramineni M, Sinn B, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol. 2017;35(10):1049–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999;17(2):460–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuroi K, Toi M, Ohno S, Nakamura S, Iwata H, Masuda N, Sato N, Tsuda H, Kurosumi M, Akiyama F. Prognostic significance of subtype and pathologic response in operable breast cancer; a pooled analysis of prospective neoadjuvant studies of JBCRG. Breast Cancer (Tokyo, Japan). 2015;22(5):486–95.

    Article 
    PubMed 

    Google Scholar
     

  • Untch M, Fasching PA, Konecny GE, Hasmuller S, Lebeau A, Kreienberg R, Camara O, Muller V, du Bois A, Kuhn T, et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J Clin Oncol. 2011;29(25):3351–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian B, Yang J, Zhou J, Hu L, Zhang S, Ren M, Qu X. Individualized model for predicting pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: a multicenter study. Front Endocrinol (Lausanne). 2022;13: 955250.

    Article 
    PubMed 

    Google Scholar
     

  • Goorts B, van Nijnatten TJ, de Munck L, Moossdorff M, Heuts EM, de Boer M, Lobbes MB, Smidt ML. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2017;163(1):83–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livingston-Rosanoff D, Schumacher J, Vande Walle K, Stankowski-Drengler T, Greenberg CC, Neuman H, Wilke LG. Does tumor size predict response to neoadjuvant chemotherapy in the modern era of biologically driven treatment? A nationwide study of US breast cancer patients. Clin Breast Cancer. 2019;19(6):e741–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan N, Adam R, Huang P, Maldjian T, Duong TQ. Deep learning prediction of pathologic complete response in breast cancer using MRI and other clinical data: a systematic review. Tomography. 2022;8(6):2784–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dammu H, Ren T, Duong TQ. Deep learning prediction of pathological complete response, residual cancer burden, and progression-free survival in breast cancer patients. PLoS ONE. 2023;18(1): e0280148.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Syed A, Adam R, Ren T, Lu J, Maldjian T, Duong TQ. Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer. PLoS ONE. 2023;18(1): e0280320.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hines RB, Johnson AM, Lee E, Erickson S, Rahman SMM. Trends in breast cancer survival by race-ethnicity in Florida, 1990–2015. Cancer Epidemiol Biomarkers Prev. 2021;30(7):1408–15.

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell E, Alese OB, Yates C, Rivers BM, Blackstock W, Newman L, Davis M, Byrd G, Harris AE. Cancer healthcare disparities among African Americans in the United States. J Natl Med Assoc. 2022;114(3):236–50.

    PubMed 

    Google Scholar
     

  • Reeder-Hayes K, Peacock Hinton S, Meng K, Carey LA, Dusetzina SB. Disparities in use of human epidermal growth hormone receptor 2-targeted therapy for early-stage breast cancer. J Clin Oncol. 2016;34(17):2003–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Lv L, Gao H, Cheng M. Pathologic complete response and its impact on breast cancer recurrence and patient’s survival after neoadjuvant therapy: a comprehensive meta-analysis. Comput Math Methods Med. 2021;2021:7545091.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayanian JZ, Kohler BA, Abe T, Epstein AM. The relation between health insurance coverage and clinical outcomes among women with breast cancer. N Engl J Med. 1993;329(5):326–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen BL, Yang HC, Farrar WB, Golden-Kreutz DM, Emery CF, Thornton LM, Young DC, Carson WE 3rd. Psychologic intervention improves survival for breast cancer patients: a randomized clinical trial. Cancer. 2008;113(12):3450–8.

    Article 
    PubMed 

    Google Scholar
     

  • Hoy MK, Winters BL, Chlebowski RT, Papoutsakis C, Shapiro A, Lubin MP, Thomson CA, Grosvenor MB, Copeland T, Falk E, et al. Implementing a low-fat eating plan in the Women’s Intervention Nutrition Study. J Am Diet Assoc. 2009;109(4):688–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol. 2011;28(3):753–65.

    Article 
    PubMed 

    Google Scholar
     

  • Weeks JC, Cook EF, O’Day SJ, Peterson LM, Wenger N, Reding D, Harrell FE, Kussin P, Dawson NV, Connors AF Jr, et al. Relationship between cancer patients’ predictions of prognosis and their treatment preferences. JAMA. 1998;279(21):1709–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundqvist A, Andersson E, Ahlberg I, Nilbert M, Gerdtham U. Socioeconomic inequalities in breast cancer incidence and mortality in Europe-a systematic review and meta-analysis. Eur J Public Health. 2016;26(5):804–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coates RJ, Clark WS, Eley JW, Greenberg RS, Huguley CM Jr, Brown RL. Race, nutritional status, and survival from breast cancer. J Natl Cancer Inst. 1990;82(21):1684–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramsey SD, Bansal A, Fedorenko CR, Blough DK, Overstreet KA, Shankaran V, Newcomb P. Financial insolvency as a risk factor for early mortality among patients with cancer. J Clin Oncol. 2016;34(9):980–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma SJ, Iovoli AJ, Attwood K, Wooten KE, Arshad H, Gupta V, McSpadden RP, Kuriakose MA, Markiewicz MR, Chan JM, et al. Association of significant financial burden with survival for head and neck cancer patients treated with radiation therapy. Oral Oncol. 2021;115: 105196.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein J, Bodner W, Garg M, Kalnicki S, Ohri N. Pretreatment financial toxicity predicts progression-free survival following concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. Future Oncol. 2019;15(15):1697–705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams AD, Buckley M, Ciocca RM, Sabol JL, Larson SL, Carp NZ. Racial and socioeconomic disparities in breast cancer diagnosis and mortality in Pennsylvania. Breast Cancer Res Treat. 2022;192(1):191–200.

    Article 
    PubMed 

    Google Scholar
     

  • Figueiredo F, Adami F. Income inequality and mortality owing to breast cancer: evidence from Brazil. Clin Breast Cancer. 2018;18(4):e651–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ingleby FC, Woods LM, Atherton IM, Baker M, Elliss-Brookes L, Belot A. An investigation of cancer survival inequalities associated with individual-level socio-economic status, area-level deprivation, and contextual effects, in a cancer patient cohort in England and Wales. BMC Public Health. 2022;22(1):90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bidard FC, Michiels S, Riethdorf S, Mueller V, Esserman LJ, Lucci A, Naume B, Horiguchi J, Gisbert-Criado R, Sleijfer S, et al. Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. J Natl Cancer Inst. 2018;110(6):560–7.

    Article 
    PubMed 

    Google Scholar
     

  • Ren T, Cattell R, Duanmu H, Huang P, Li H, Vanguri R, Liu MZ, Jambawalikar S, Ha R, Wang F et al. Convolutional neural network detection of axillary lymph node metastasis using standard clinical breast MRI. Clin Breast Cancer. 2020;20(3):e301-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren T, Lin S, Huang P, Duong TQ: Convolutional neural network of multiparametric MRI accurately detects axillary lymph node metastasis in breast cancer patients with pre neoadjuvant chemotherapy. Clin Breast Cancer. 2022;22(2):170-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattell RF, Kang JJ, Ren T, Huang PB, Muttreja A, Dacosta S, Li H, Baer L, Clouston S, Palermo R et al: MRI volume changes of axillary lymph nodes as predictor of pathologic complete responses to neoadjuvant chemotherapy in breast cancer. Clin Breast Cancer. 2020;20(1):68-79.e61.

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *