Uncategorized

Machine learning for automated experimentation in scanning transmission electron microscopy



  • Callister, W. D. & Rethwisch, D. G. Materials science and engineering: an introduction. Vol. 7. (John wiley & sons New York, 2007).

  • Martin, J. D. What’s in a name change? Phys. Perspect. 17, 3–32 (2015).

    Article 

    Google Scholar
     

  • Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article 

    Google Scholar
     

  • Levi, A. F. & Aeppli, G. The Naked Chip: no trade secret or hardware trojan can hide from ptychographic X-ray laminography. IEEE Spectr. 59, 38–43 (2022).

    Article 

    Google Scholar
     

  • Stevenson, A. W. et al. Phase-contrast X-ray imaging with synchrotron radiation for materials science applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 199, 427–435 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Fan, C. & Zhao, Z. Synchrotron radiation in materials science: light sources, techniques, and applications (John Wiley & Sons, 2018).

  • Yao, Y. et al. AutoPhaseNN: unsupervised physics-aware deep learning of 3D nanoscale Bragg coherent diffraction imaging. npj Comput. Mater. 8, 124 (2022).

    Article 

    Google Scholar
     

  • Lee, C.-H. et al. Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision. Nano Lett. 20, 3369–3377 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Spence, J. C. The future of atomic resolution electron microscopy for materials science. Mater. Sci. Eng. R: Rep. 26, 1–49 (1999).

    Article 

    Google Scholar
     

  • Mukherjee, D. et al. Atomic-scale measurement of polar entropy. Phys. Rev. B 100, 104102 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y. et al. Analytical transmission electron microscopy for emerging advanced materials. Matter 4, 2309–2339 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williams, D. B. & Carter, C. B. The transmission electron microscope (Springer, 1996)

  • Pennycook, S. J. & Nellist, P. D. Scanning transmission electron microscopy: imaging and analysis (Springer Science & Business Media, 2011).

  • Crewe, A. V. Scanning transmission electron microscopy. J. Microsc. 100, 247–259 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Nellist, P. & Pennycook, S. The principles and interpretation of annular dark-field Z-contrast imaging. In Advances in imaging and electron physics (Elsevier, 2000) p. 147–203.

  • Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ramasse, Q. M. Twenty years after: How “Aberration correction in the STEM” truly placed a “A synchrotron in a Microscope”. Ultramicroscopy 180, 41–51 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Haider, M., Uhlemann, S. & Zach, J. Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163–175 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Krivanek, O., et al. Aberration correction in the STEM, in Electron Microscopy and Analysis 1997. (CRC Press, 1997) p. 35–40.

  • Sawada, H., Sasaki, T., Hosokawa, F. & Suenaga, K. Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Konno, M. et al. Lattice imaging at an accelerating voltage of 30 kV using an in-lens type cold field-emission scanning electron microscope. Ultramicroscopy 145, 28–35 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pennycook, S. J. The impact of STEM aberration correction on materials science. Ultramicroscopy 180, 22–33 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 559, 343-+ (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Stone, G. et al. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide. Nat. Commun. 7, 12572 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, D., Miao, L., Stone, G. & Alem, N. mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks. Adv. Struct. Chem. Imaging 6, 1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chisholm, M. F., et al. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010).

  • Hong, Z. J. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q., et al. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling. Nat. Commun. 8, 1468 (2017).

  • Borisevich, A. Y., et al. Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects. Phys. Rev. Lett., 2012. 109, 065702 (2012).

  • Miao, L. et al. Double-Bilayer polar nanoregions and Mn antisites in (Ca, Sr)3Mn2O7. Nature. Communications 13, 4927 (2022).

    CAS 

    Google Scholar
     

  • Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Varela, M. et al. Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Brown, L. A synchrotron in a microscope. In Electron Microscopy and Analysis (CRC Press, 1997) p. 17–22.

  • Mukherjee, D., Gamler, J. T. L., Skrabalak, S. E. & Unocic, R. R. Lattice strain measurement of core@Shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction. ACS. Catalysis 10, 5529–5541 (2020).

    CAS 

    Google Scholar
     

  • Han, Y. et al. Strain mapping of two-dimensional heterostructures with subpicometer precision. Nano Lett. 18, 3746–3751 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kirkland, E. J. Advanced computing in electron microscopy. Vol. 12. (Springer, 1998).

  • Bonnet, N. Artificial intelligence and pattern recognition techniques in microscope image processing and analysis. In Advances in Imaging and Electron Physics (Elsevier, 2000), p. 1–77.

  • Bonnet, N. Multivariate statistical methods for the analysis of microscope image series: applications in materials science. J. Microsc. 190, 2–18 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kalinin, S. V., Sumpter, B. G. & Archibald, R. K. Big-deep-smart data in imaging for guiding materials design. Nat. Mater. 14, 973 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jesse, S., et al. Big data analytics for scanning transmission electron microscopy ptychography. Sci. Rep. 6, 26348 (2016).

  • Ziatdinov, M. et al. Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations. ACS Nano 11, 12742–12752 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ziatdinov, M., et al. Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology 27, 495703 (2016).

  • Kalinin, S. V. et al. Machine learning in scanning transmission electron microscopy. Nat. Rev. Methods Prim. 2, 11 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, J. et al. Imaging atomic-scale chemistry from fused multi-modal electron microscopy. npj Comput. Mater. 8, 16 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Munshi, J. et al. Disentangling multiple scattering with deep learning: application to strain mapping from electron diffraction patterns. npj Comput. Mater. 8, 254 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bruefach, A., Ophus, C. & Scott, M. C. Analysis of interpretable data representations for 4D-STEM using unsupervised learning. Microsc. Microanal. 28, 1998–2008 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Roccapriore, K. M. et al. Automated experiment in 4D-STEM: exploring emergent physics and structural behaviors. ACS Nano 16, 7605–7614 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cherukara, M. J. et al. AI-enabled high-resolution scanning coherent diffraction imaging. Appl. Phys. Lett. 117, 044103 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, D. et al. A roadmap for edge computing enabled automated multidimensional transmission electron. Microsc. Microsc. Today 30, 10–19 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cao, M. C., Chen, Z., Jiang, Y. & Han, Y. Automatic parameter selection for electron ptychography via Bayesian optimization. Sci. Rep. 12, 12284 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bosman, M., Watanabe, M., Alexander, D. T. L. & Keast, V. J. Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Torruella, P. et al. Clustering analysis strategies for electron energy loss spectroscopy (EELS). Ultramicroscopy 185, 42–48 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jesse, S. & Kalinin, S. V. Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology 20, 085714 (2009).

    Article 

    Google Scholar
     

  • Griffin, L. A., Gaponenko, I. & Bassiri-Gharb, N. Better, faster, and less biased machine learning: electromechanical switching in ferroelectric thin films. Adv. Mater. 32, 2002425 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qin, S., Guo, Y., Kaliyev, A. T. & Agar, J. C. Why it is unfortunate that linear machine learning “works” so well in electromechanical switching of ferroelectric thin films. Adv. Mater. 34, 2202814 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Agar, J. C. et al. Revealing ferroelectric switching character using deep recurrent neural networks. Nat. Commun. 10, 4809 (2019).

    Article 

    Google Scholar
     

  • Higgins, I., et al. beta-vae: Learning basic visual concepts with a constrained variational framework. In International conference on learning representations (ICLR, 2017).

  • Kalinin, S. V. et al. Deep Bayesian local crystallography. Npj Comput. Mater. 7, 12 (2021).

    Article 

    Google Scholar
     

  • Kalinin, S. V., Dyck, O., Jesse, S. & Ziatdinov, M. Exploring order parameters and dynamic processes in disordered systems via variational autoencoders. Sci. Adv. 7, eabd5084 (2021).

  • Kalinin, S. V. et al. Disentangling ferroelectric domain wall geometries and pathways in dynamic piezoresponse force microscopy via unsupervised machine learning. Nanotechnology 33, 11 (2022).

    Article 

    Google Scholar
     

  • Ziatdinov, M., Maksov, A., & Kalinin, S. V. Learning surface molecular structures via machine vision. Npj Comput. Mater. 3, 31 (2017).

  • Doty, C. et al. Design of a graphical user interface for few-shot machine learning classification of electron microscopy data. Comput. Mater. Sci. 203, 111121 (2022).

    Article 

    Google Scholar
     

  • Somnath, S. et al. USID and pycroscopy–Open source frameworks for storing and analyzing imaging and spectroscopy data. Microsc. Microanal. 25, 220–221 (2019).

    Article 

    Google Scholar
     

  • Jesse, S. et al. Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic plane precision. Small 11, 5895–5900 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Unocic, R. R. et al. Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale 8, 15581–15588 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dyck, O., Lupini, A. R. & Jesse, S. Atom-by-Atom Direct Writing. Nano. Letters 23, 2339–2346 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sang, X. et al. Dynamic scan control in STEM: spiral scans. Adv. Struct. Chem. Imaging 2, 6 (2016).

    Article 

    Google Scholar
     

  • Roccapriore, K. M. et al. Sculpting the plasmonic responses of nanoparticles by directed electron beam irradiation. Small 18, 10 (2022).

    Article 

    Google Scholar
     

  • Al-Najjar, A., et al. Enabling autonomous electron microscopy for networked computation and steering. In 2022 IEEE 18th International Conference on e-Science (e-Science) (IEEE, 2022).

  • Casas Moreno, X. et al. An open-source microscopy framework for simultaneous control of image acquisition, reconstruction, and analysis. HardwareX 13, e00400 (2023).

    Article 

    Google Scholar
     

  • Olszta, M. et al. An automated scanning transmission electron microscope guided by sparse data analytics. Microsc. Microanal. 28, 1611–1621 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kalinin, S. V. et al. Automated and autonomous experiments in electron and scanning probe microscopy. ACS Nano 15, 12604–12627 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schorb, M. et al. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vasudevan, R. K., Ziatdinov, M., Jesse, S. & Kalinin, S. V. Phases and interfaces from real space atomically resolved data: physics-based deep data image analysis. Nano Lett. 16, 5574–5581 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Akers, S. et al. Rapid and flexible segmentation of electron microscopy data using few-shot machine learning. npj Comput. Mater. 7, 187 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, N. R. et al. Forecasting of in situ electron energy loss spectroscopy. npj Comput. Mater. 8, 252 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. & Ma, Y. Ensemble machine learning: methods and applications (Springer Science & Business Media, 2012).

  • Ghosh, A., Sumpter, B. G., Dyck, O., Kalinin, S. V. & Ziatdinov, M. Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy. npj Comput. Mater. 7, 100 (2021).

  • Roccapriore, K. M. et al. Probing electron beam induced transformations on a single-defect level via automated scanning transmission electron microscopy. ACS nano 16, 17116–17127 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jacob Madsen, T. S. The abTEM code: transmission electron microscopy from first principles. Open Res. Eur. 1, 24 (2021).

    Article 

    Google Scholar
     

  • Schwenker, E. et al. Ingrained-An automated framework for fusing atomic-scale image simulations into experiments. Small. 18(19), e2102960 (2022).

  • Lingerfelt, E. J. et al. BEAM: a computational workflow system for managing and modeling material characterization data in HPC environments. Proc. Comput. Sci. 80, 2276–2280 (2016).

    Article 

    Google Scholar
     

  • Merz, K. M. Jr. et al. Method and data sharing and reproducibility of scientific results. J. Chem. Inf. Model. 60, 5868–5869 (2020).

    Article 

    Google Scholar
     

  • Ghosh, A., Ziatdinov, M., Dyck, O., Sumpter, B. & Kalinin, S. V. Bridging microscopy with molecular dynamics and quantum simulations: an AtomAI based pipeline. npj Comput. Mater. 8, 11 (2021).


    Google Scholar
     

  • Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. 116, 22445–22451 (2019).

  • Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 (2017).

    Article 

    Google Scholar
     

  • Cottrill, A. L. et al. Simultaneous inversion of optical and infra-red image data to determine thermo-mechanical properties of thermally conductive solid materials. Int. J. Heat. Mass Transf. 163, 120445 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Ziatdinov, M. & Kalinin, S. V. Exploring causal physical mechanisms via non-gaussian linear models and deep kernel learning: applications for ferroelectric domain structures. ACS Nano 16, 9 (2021).

    CAS 

    Google Scholar
     

  • Nelson, C. et al. Mapping causal patterns in crystalline solids. Preprint at https://arxiv.org/abs/2103.01951 (2021).

  • Ziatdinov, M. et al. Causal analysis of competing atomistic mechanisms in ferroelectric materials from high-resolution scanning transmission electron microscopy data. npj Comput. Mater. 6, 127 (2020).

  • Vasudevan, R. K., Ziatdinov M., Vlcek, L. & Kalinin, S. V. Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality. npj Comput. Mater. 7, 127 (2021).

  • Benedek, N. A. & Fennie, C. J., Hybrid improper ferroelectricity: a mechanism for strong polairzation-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

  • Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds. Adv. Funct. Mater. 23, 4810–4820 (2013).

  • Balachandran,P. V., Young, J., Lookman, T. & Rondinelli, J. M. Learning from data to design functional materials without inversion symmetry. Nat. Commun. 8, 14282 (2017).

  • Rondinelli, J. M. & Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 24, 1961–1968 (2012).

  • Ghosh, A., Palanichamy, G., Trujillo, D. P., Shaikh, M. & Ghosh, S. Insights into cation ordering of double perovskite oxides from machine learning and causal relations. Chem. Mater. 34, 7563–7578 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fiedler, K. R., et al. Evaluating stage motion for automated electron microscopy. https://doi.org/10.1093/micmic/ozad108 (2022).

  • Roccapriore, K. M., Creange, N., Ziatdinov, M. & Kalinin, S. V. Identification and correction of temporal and spatial distortions in scanning transmission electron microscopy. Ultramicroscopy 229, 113337 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ophus, C., Ciston, J. & Nelson, C. T. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions. Ultramicroscopy 162, 1–9 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jones, L. & Nellist, P. D. Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc. Microanal. 19, 1050–1060 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Roccapriore, K. M., Kalinin, S. V. & Ziatdinov, M. Physics discovery in nanoplasmonic systems via autonomous experiments in scanning transmission electron microscopy. Adv. Sci. 9, 2203422 (2022).

  • Duarte, J. et al. Fast inference of deep neural networks in FPGAs for particle physics. J. Instrum. 13, P07027 (2018).

  • Team, F. Machine learning on FPGAs using HLS, https://github.com/fastmachinelearning/hls4ml (2023).

  • Umuroglu, Y. et al., Finn: a framework for fast, scalable binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (ACM, 2017).

  • Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems, http://tensorflow.org/ (2015).

  • Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. In Advances in neural information processing systems (NeurIPS, 2019).

  • Al-Najjar, A. & Rao, N. S. V. Virtual infrastructure twin for computing-instrument ecosystems: software and measurements. IEEE Access 11, 20254–20266 (2023).

    Article 

    Google Scholar
     

  • Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (IEEE, 2020), p. 4401–4410.



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *