Uncategorized

Machine learning-based radiomics strategy for prediction of acquired EGFR T790M mutation following treatment with EGFR-TKI in NSCLC



  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249. https://doi.org/10.3322/caac.21660 (2021).

    Article 

    Google Scholar
     

  • Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380. https://doi.org/10.1056/NEJMra0802714 (2008).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454. https://doi.org/10.1038/nature25183 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gelatti, A. C. Z., Drilon, A. & Santini, F. C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer 137, 113–122. https://doi.org/10.1016/j.lungcan.2019.09.017 (2019).

    Article 

    Google Scholar
     

  • Han, B. et al. EGFR mutation prevalence in Asia-Pacific and Russian patients with advanced NSCLC of adenocarcinoma and non-adenocarcinoma histology: The IGNITE study. Lung Cancer 113, 37–44. https://doi.org/10.1016/j.lungcan.2017.08.021 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957. https://doi.org/10.1056/NEJMoa0810699 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. L. et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet. Oncol. 18, 1454–1466. https://doi.org/10.1016/s1470-2045(17)30608-3 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. L. et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol. 15, 213–222. https://doi.org/10.1016/S1470-2045(13)70604-1 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. L. et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: Analyses from the phase III, randomized, open-label, ENSURE study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 26, 1883–1889. https://doi.org/10.1093/annonc/mdv270 (2015).

    Article 

    Google Scholar
     

  • Koo, D. H. et al. EGFR-TKI is effective regardless of treatment timing in pulmonary adenocarcinoma with EGFR mutation. Cancer Chemother. Pharmacol. 75, 197–206. https://doi.org/10.1007/s00280-014-2631-5 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lim, S. M., Syn, N. L., Cho, B. C. & Soo, R. A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat. Rev. 65, 1–10. https://doi.org/10.1016/j.ctrv.2018.02.006 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. U. S. A. 105, 2070–2075. https://doi.org/10.1073/pnas.0709662105 (2008).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Mok, T. S. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640. https://doi.org/10.1056/NEJMoa1612674 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125. https://doi.org/10.1056/NEJMoa1713137 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Takeda, M. & Nakagawa, K. First- and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer?. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20010146 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Shah, R. & Lester, J. F. Tyrosine kinase inhibitors for the treatment of EGFR mutation-positive non-small-cell lung cancer: A clash of the generations. Clin. Lung Cancer 21, e216–e228. https://doi.org/10.1016/j.cllc.2019.12.003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hochmair, M. J. et al. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer: Final analysis of the GioTag study. Future Oncol. 16, 2799–2808. https://doi.org/10.2217/fon-2020-0740 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50. https://doi.org/10.1056/NEJMoa1913662 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mayerhoefer, M. E. et al. Introduction to radiomics. J. Nucl. Med. 61, 488–495. https://doi.org/10.2967/jnumed.118.222893 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Thawani, R. et al. Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung Cancer 115, 34–41. https://doi.org/10.1016/j.lungcan.2017.10.015 (2018).

    Article 

    Google Scholar
     

  • Binczyk, F., Prazuch, W., Bozek, P. & Polanska, J. Radiomics and artificial intelligence in lung cancer screening. Transl. Lung Cancer Res. 10, 1186–1199. https://doi.org/10.21037/tlcr-20-708 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Avanzo, M., Stancanello, J., Pirrone, G. & Sartor, G. Radiomics and deep learning in lung cancer. Strahlenther. Onkol. 196, 879–887. https://doi.org/10.1007/s00066-020-01625-9 (2020).

    Article 

    Google Scholar
     

  • Kawahara, D. et al. Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis. Sci. Rep. 11, 16232. https://doi.org/10.1038/s41598-021-95643-x (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Rossi, G. et al. Radiomic detection of EGFR mutations in NSCLC. Cancer Res. 81, 724–731. https://doi.org/10.1158/0008-5472.CAN-20-0999 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Q., Yang, Z., Dai, H., Feng, A. & Li, Q. Radiomics study for predicting the expression of PD-L1 and Tumor mutation burden in non-small cell lung cancer based on CT images and clinicopathological features. Front. Oncol. 11, 620246. https://doi.org/10.3389/fonc.2021.620246 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Chetan, M. R. & Gleeson, F. V. Radiomics in predicting treatment response in non-small-cell lung cancer: Current status, challenges and future perspectives. Eur. Radiol. 31, 1049–1058. https://doi.org/10.1007/s00330-020-07141-9 (2021).

    Article 

    Google Scholar
     

  • Lu, J. et al. Machine learning-based radiomics for prediction of epidermal growth factor receptor mutations in lung adenocarcinoma. Dis. Markers 2022, 2056837. https://doi.org/10.1155/2022/2056837 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Can CT radiomics detect acquired T790M mutation and predict prognosis in advanced lung adenocarcinoma with progression after first- or second-generation EGFR TKIs?. Front. Oncol. 12, 904983. https://doi.org/10.3389/fonc.2022.904983 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Detterbeck, F. C., Boffa, D. J., Kim, A. W. & Tanoue, L. T. The eighth edition lung cancer stage classification. Chest 151, 193–203. https://doi.org/10.1016/j.chest.2016.10.010 (2017).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Re-biopsy and liquid biopsy for patients with non-small cell lung cancer after EGFR-tyrosine kinase inhibitor failure. Thorac. Cancer 10, 957–965. https://doi.org/10.1111/1759-7714.13035 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Next-generation sequencing of tissue and circulating tumor DNA: Resistance mechanisms to EGFR targeted therapy in a cohort of patients with advanced non-small cell lung cancer. Cancer Med. 10, 4697–4709. https://doi.org/10.1002/cam4.3948 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • She, Y. et al. The predictive value of CT-based radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules. Eur. Radiol. 28, 5121–5128. https://doi.org/10.1007/s00330-018-5509-9 (2018).

    Article 

    Google Scholar
     

  • Hong, D., Xu, K., Zhang, L., Wan, X. & Guo, Y. Radiomics signature as a predictive factor for EGFR mutations in advanced lung adenocarcinoma. Front. Oncol. 10, 28. https://doi.org/10.3389/fonc.2020.00028 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Yushkevich, P. A. & Gerig, G. ITK-SNAP: An intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images. IEEE Pulse 8, 54–57. https://doi.org/10.1109/MPUL.2017.2701493 (2017).

    Article 

    Google Scholar
     

  • Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31, 1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015 (2006).

    Article 

    Google Scholar
     

  • Leijenaar, R. T. et al. Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol. 52, 1391–1397. https://doi.org/10.3109/0284186X.2013.812798 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zwanenburg, A. et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338. https://doi.org/10.1148/radiol.2020191145 (2020).

    Article 

    Google Scholar
     

  • Ren, M. et al. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients. Med. Phys. 48, 5142–5151. https://doi.org/10.1002/mp.15137 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Morgado, J. et al. Machine learning and feature selection methods for EGFR mutation status prediction in lung cancer. Appl. Sci. Basel 11, 3273 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wilcoxin, F. Probability tables for individual comparisons by ranking methods. Biometrics 3, 119–122 (1947).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med. 16, 385–395. https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. & Sillanpaa, M. J. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor. Appl. Genet. 125, 419–435. https://doi.org/10.1007/s00122-012-1892-9 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 4, 136. https://doi.org/10.21037/atm.2016.03.35 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14. https://doi.org/10.3389/fninf.2014.00014 (2014).

    Article 
    PubMed Central 

    Google Scholar
     

  • Chapman, A. M., Sun, K. Y., Ruestow, P., Cowan, D. M. & Madl, A. K. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers. Lung Cancer 102, 122–134. https://doi.org/10.1016/j.lungcan.2016.10.010 (2016).

    Article 

    Google Scholar
     

  • Wang, S. et al. Value of serum tumor markers for predicting EGFR mutations and positive ALK expression in 1089 Chinese non-small-cell lung cancer patients: A retrospective analysis. Eur. J. Cancer 124, 1–14. https://doi.org/10.1016/j.ejca.2019.10.005 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Balachandran, V. P., Gonen, M., Smith, J. J. & DeMatteo, R. P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 16, e173-180. https://doi.org/10.1016/S1470-2045(14)71116-7 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics 9, 1303–1322. https://doi.org/10.7150/thno.30309 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kumar, V. et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 30, 1234–1248. https://doi.org/10.1016/j.mri.2012.06.010 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Shi, L. et al. Radiomics for response and outcome assessment for non-small cell lung cancer. Technol. Cancer Res. Treat. 17, 1533033818782788. https://doi.org/10.1177/1533033818782788 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhou, M. et al. Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications. Radiology 286, 307–315. https://doi.org/10.1148/radiol.2017161845 (2018).

    Article 

    Google Scholar
     

  • Kim, H. et al. Repeat biopsy of patients with acquired resistance to EGFR TKIs: Implications of biopsy-related factors on T790M mutation detection. Eur. Radiol. 28, 861–868. https://doi.org/10.1007/s00330-017-5006-6 (2018).

    Article 

    Google Scholar
     

  • Hou, D. et al. Different clinicopathologic and computed tomography imaging characteristics of primary and acquired EGFR T790M mutations in patients with non-small-cell lung cancer. Cancer Manag. Res. 13, 6389–6401. https://doi.org/10.2147/CMAR.S323972 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Koo, H. J. et al. Non-small cell lung cancer with resistance to EGFR-TKI therapy: CT characteristics of T790M mutation-positive cancer. Radiology 289, 227–237. https://doi.org/10.1148/radiol.2018180070 (2018).

    Article 

    Google Scholar
     

  • Yoshida, T. et al. Standardized uptake value on (18)F-FDG-PET/CT is a predictor of EGFR T790M mutation status in patients with acquired resistance to EGFR-TKIs. Lung Cancer 100, 14–19. https://doi.org/10.1016/j.lungcan.2016.07.022 (2016).

    Article 

    Google Scholar
     

  • Tang, X. et al. Machine learning-based CT radiomics analysis for prognostic prediction in metastatic non-small cell lung cancer patients with EGFR-T790M mutation receiving third-generation EGFR-TKI osimertinib treatment. Front. Oncol. 11, 719919. https://doi.org/10.3389/fonc.2021.719919 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kawamura, T. et al. Clinical factors predicting detection of T790M mutation in rebiopsy for EGFR-mutant non-small-cell lung cancer. Clin. Lung Cancer 19, e247–e252. https://doi.org/10.1016/j.cllc.2017.07.002 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Oya, Y. et al. Association between EGFR T790M status and progression patterns during initial EGFR-TKI treatment in patients harboring EGFR mutation. Clin. Lung Cancer 18, 698–705. https://doi.org/10.1016/j.cllc.2017.05.004 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dal Maso, A. et al. Clinical features and progression pattern of acquired T790M-positive compared With T790M-negative EGFR mutant non-small-cell lung cancer: Catching tumor and clinical heterogeneity over time through liquid biopsy. Clin. Lung Cancer 21, 1–14. https://doi.org/10.1016/j.cllc.2019.07.009 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Callejo, D., Romero, A., Provencio, M. & Torrente, M. Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl. Lung Cancer Res. 5, 455–465. https://doi.org/10.21037/tlcr.2016.10.07 (2016).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Rolfo, C. et al. Liquid biopsies in lung cancer: The new ambrosia of researchers. Biochim. Biophys. Acta 539–546, 2014. https://doi.org/10.1016/j.bbcan.2014.10.001 (1846).

    Article 
    CAS 

    Google Scholar
     

  • Del Re, M. et al. Understanding the mechanisms of resistance in EGFR-positive NSCLC: From tissue to liquid biopsy to guide treatment strategy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20163951 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Cecchini, M. J. & Yi, E. S. Liquid biopsy is a valuable tool in the diagnosis and management of lung cancer. J. Thorac. Dis. 12, 7048–7056. https://doi.org/10.21037/jtd.2020.04.20 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Minari, R. et al. Detection of EGFR-activating and T790M mutations using liquid biopsy in patients With EGFR-mutated Non-small-cell lung cancer whose disease has progressed during treatment with first- and second-generation tyrosine kinase inhibitors: A multicenter real-life retrospective study. Clin. Lung Cancer 21, e464–e473. https://doi.org/10.1016/j.cllc.2020.02.021 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buder, A. et al. Cell-free plasma DNA-guided treatment with osimertinib in patients with advanced EGFR-mutated NSCLC. J. Thorac. Oncol. 13, 821–830. https://doi.org/10.1016/j.jtho.2018.02.014 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: American society of clinical oncology and college of American pathologists joint review. J. Clin. Oncol. 36, 1631–1641. https://doi.org/10.1200/JCO.2017.76.8671 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sundaresan, T. K. et al. Detection of T790M, the acquired resistance EGFR Mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin. Cancer Res. 22, 1103–1110. https://doi.org/10.1158/1078-0432.CCR-15-1031 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Oxnard, G. R. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 3375–3382. https://doi.org/10.1200/JCO.2016.66.7162 (2016).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Cucchiara, F. et al. Integrating liquid biopsy and radiomics to monitor clonal heterogeneity of EGFR-positive non-small cell lung cancer. Front. Oncol. 10, 593831. https://doi.org/10.3389/fonc.2020.593831 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17. https://doi.org/10.1016/j.csbj.2014.11.005 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Q. et al. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Eur. J. Radiol. 118, 32–37. https://doi.org/10.1016/j.ejrad.2019.06.025 (2019).

    Article 

    Google Scholar
     

  • Parmar, C., Grossmann, P., Bussink, J., Lambin, P. & Aerts, H. Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 5, 13087. https://doi.org/10.1038/srep13087 (2015).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Saini, R., Fatima, S. & Agarwal, S. M. TMLRpred: A machine learning classification model to distinguish reversible EGFR double mutant inhibitors. Chem. Biol. Drug Des. 96, 921–930. https://doi.org/10.1111/cbdd.13697 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Savargiv, M., Masoumi, B. & Keyvanpour, M. R. A new random forest algorithm based on learning automata. Comput. Intell. Neurosci. 2021, 5572781. https://doi.org/10.1155/2021/5572781 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Marchese Robinson, R. L. et al. Comparison of the predictive performance and interpretability of random forest and linear models on benchmark data sets. J. Chem. Inf. Model. 28, 1773–1792. https://doi.org/10.1021/acs.jcim.6b00753 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 278, 563–577. https://doi.org/10.1148/radiol.2015151169 (2016).

    Article 

    Google Scholar
     

  • Lohmann, P., Bousabarah, K., Hoevels, M. & Treuer, H. Radiomics in radiation oncology-basics, methods, and limitations. Strahlenther. Onkol. 196, 848–855. https://doi.org/10.1007/s00066-020-01663-3 (2020).

    Article 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *