Uncategorized

Machine learning-assisted image label-free smartphone platform for rapid segmentation and robust multi-urinalysis



  • Tummalapalli SL, Shlipak MG, Damster S, Jha V, Malik C, Levin A, et al. Availability and affordability of kidney health laboratory tests around the globe. Am J Nephrol. 2021;51(12):959–65.

    Article 

    Google Scholar
     

  • Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389(10075):1238–52.

    Article 
    PubMed 

    Google Scholar
     

  • Yamagata K, Iseki K, Nitta K, Imai H, Iino Y, Matsuo S, et al. Chronic kidney disease perspectives in Japan and the importance of urinalysis screening. Clin Exp Nephrol. 2008;12(1):1–8.

    Article 
    PubMed 

    Google Scholar
     

  • Hwang C, Lee WJ, Kim SD, Park S, Kim JH. Recent advances in biosensor technologies for point-of-care urinalysis. Biosens-Basel. 2022;12(11):1020.

    Article 
    CAS 

    Google Scholar
     

  • Sritong N, de Medeiros MS, Basing LA, Linnes JC. Promise and perils of paper-based point-of-care nucleic acid detection for endemic and pandemic pathogens. Lab Chip. 2023;23(5):888–912.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Delft S, Goedhart A, Spigt M, van Pinxteren B, de Wit N, Hopstaken R. Prospective, observational study comparing automated and visual point-of-care urinalysis in general practice. BMJ Open. 2016;6(8):e011230.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Cai G, Zhao J, Feng S. An Optical POCT device for colorimetric detection of urine test strips based on Raspberry Pi imaging. Photonics. 2022;9(10):784.

    Article 

    Google Scholar
     

  • Kap Ö, Kılıç V, Hardy JG, Horzum N. Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. Analyst. 2021;146(9):2784–806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Nehra M, Khurana S, Dilbaghi N, Kumar V, Kaushik A, et al. Aspects of point-of-care diagnostics for personalized health wellness. Int J Nanomedicine. 2021;16:383–402.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abel G. Current status and future prospects of point-of-care testing around the globe. Expert Rev Mol Diagn. 2015;15(7):853–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewandrowski EL, Yeh S, Baron J, Benjamin Crocker J, Lewandrowski K. Implementation of point-of-care testing in a general internal medicine practice: a confirmation study. Clin Chim Acta Int J Clin Chem. 2017;473:71–4.

    Article 
    CAS 

    Google Scholar
     

  • Mahoney E, Kun J, Smieja M, Fang Q. Review-point-of-care urinalysis with emerging sensing and imaging technologies. J Electrochem Soc. 2020;167(3):037518.

    Article 
    CAS 

    Google Scholar
     

  • Lei R, Huo R, Mohan C. Current and emerging trends in point-of-care urinalysis tests. Expert Rev Mol Diagn. 2020;20(1):69–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z, Liu Z, Xiao M, Jiang L, Yi C. A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chem Eng J. 2020;394:124966.

    Article 
    CAS 

    Google Scholar
     

  • Xie M, Chen T, Cai Z, Lei B, Dong C. A digital microfluidic platform coupled with colorimetric loop-mediated isothermal amplification for on-site visual diagnosis of multiple diseases. Lab Chip. 2023;23:2778–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kavuru V, Vu T, Karageorge L, Choudhury D, Senger R, Robertson J. Dipstick analysis of urine chemistry: benefits and limitations of dry chemistry-based assays. Postgrad Med. 2020;132(3):225–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohta S, Hiraoka R, Hiruta Y, Citterio D. Traffic light type paper-based analytical device for intuitive and semi-quantitative naked-eye signal readout. Lab Chip. 2022;22(4):717–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu G, Hu N, Ma Z, Li R. A portable analyzer based on a novel optical structure for urine dry-chemistry analysis. J Instrum. 2018;13:T07002.

    Article 

    Google Scholar
     

  • Liu G, Ma Z. Study on a novel portable urine analyzer based on optical fiber bundles. Measurement. 2018;130:412–21.

    Article 

    Google Scholar
     

  • Woodstock TK, Karlicek RF. RGB Color sensors for occupant detection: an alternative to PIR sensors. Ieee Sens J. 2020;20(20):12364–73.

    Article 

    Google Scholar
     

  • de Carvalho OG, Machado CCS, Inacio DK, da SilveiraPetruci JF, Silva SG. RGB color sensor for colorimetric determinations: evaluation and quantitative analysis of colored liquid samples. Talanta. 2022;241:123244.

    Article 

    Google Scholar
     

  • Ra M, Muhammad MS, Lim C, Han S, Jung C, Kim WY. Smartphone-based point-of-care urinalysis under variable illumination. Ieee J Transl Eng Health Med. 2018;6:2800111.

    Article 
    PubMed 

    Google Scholar
     

  • Burke AE, Thaler KM, Geva M, Adiri Y. Feasibility and acceptability of home use of a smartphone-based urine testing application among women in prenatal care. Am J Obstet Gynecol [Internet]. 2019 Nov 1;221(5):527–8, [cited 2023 Jun 1]. Available from:
    https://www.ajog.org/article/S0002-9378(19)30779-3/fulltext.

  • Balbach S, Jiang N, Moreddu R, Dong X, Kurz W, Wang C, et al. Smartphone-based colorimetric detection system for portable health tracking. Anal Methods. 2021;13(38):4361–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alawsi T, Mattia GP, Al-Bawi Z, Beraldi R. Smartphone-based colorimetric sensor application for measuring biochemical material concentration. Sens Bio-Sens Res. 2021;32:100404.

    Article 

    Google Scholar
     

  • Biswas SK, Chatterjee S, Laha S, Pakira V, Som NK, Saha S, et al. Instrument-free single-step direct estimation of the plasma glucose level from one drop of blood using smartphone-interfaced analytics on a paper strip. Lab Chip. 2022;22(23):4666–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim NK, Cho YS, Chil KS. Effect of illuminance on color-based analysis of diabetes-related urine fusion analytes on dipstick using a smartphone camera. J Korea Converg Soc. 2021;12(5):93–9.

    CAS 

    Google Scholar
     

  • Woodburn EV, Long KD, Cunningham BT, Fellow IEEE. Analysis of paper-based colorimetric assays with a smartphone spectrometer. IEEE Sens J. 2019;19(2):508–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong G, Gen L, Jia-qi M, Ya-jing S. A smartphone-based calibration-free portable urinalysis device. J Cent South Univ. 2021;28(12):3829–37.

    Article 

    Google Scholar
     

  • Tong L, Hutcheson JD. A surface-based calibration approach to enable dynamic and accurate quantification of colorimetric assay systems. Anal Methods. 2021;13(37):4290–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin F, Yuan J. Research status and trend of artificial intelligence in the diagnosis of urinary diseases. J Biomed Eng. 2020;37:230–5.


    Google Scholar
     

  • Yoo WS, Kim JG, Kang K, Yoo Y. Development of static and dynamic colorimetric analysis techniques using image sensors and novel image processing software for chemical, biological and medical applications. Technologies. 2023;11(1):23.

    Article 

    Google Scholar
     

  • Duan S, Cai T, Zhu J, Yang X, Lim EG, Huang K, et al. Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays. Anal Chim Acta. 2023;1248:340868.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solmaz ME, Mutlu AY, Alankus G, Kılıç V, Bayram A, Horzum N. Quantifying colorimetric tests using a smartphone app based on machine learning classifiers. Sens Actuators B Chem. 2018;255:1967–73.

    Article 
    CAS 

    Google Scholar
     

  • Kim SC, Cho YS. Predictive system implementation to improve the accuracy of urine self-diagnosis with smartphones: application of a confusion matrix-based learning model through RGB semiquantitative analysis. Sensors. 2022;22(14):5445.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith GT, Dwork N, Khan SA, Millet M, Magar K, Javanmard M, et al. Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. Lab Chip. 2016;16(11):2069–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Cheng W, Chen X, Qian Q, Zhang Q, Pan Y, et al. Color space transformation-based smartphone algorithm for colorimetric urinalysis. ACS Omega. 2018;3(9):12141–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang J, Zhang Y, Cai Z, Wang W, Wang C. A 3D printed centrifugal microfluidic platform for automated colorimetric urinalysis. Microsyst Technol-Micro- Nanosyst-Inf Storage Process Syst. 2020;26(2):291–9.

    CAS 

    Google Scholar
     

  • Rahman MM, Uddin MJ, Hong JH, Bhuiyan NH, Shim JS. Lab-in-a-cup (LiC): an autonomous fluidic device for daily urinalysis using smartphone. Sens Actuators B-Chem. 2022;355:131336.

    Article 
    CAS 

    Google Scholar
     

  • Tania MH, Lwin KT, Shabut AM, Najlah M, Chin J, Hossain MA. Intelligent image-based colourimetric tests using machine learning framework for lateral flow assays. Expert Syst Appl. 2020;139:112843.

    Article 

    Google Scholar
     

  • Flaucher M, Nissen M, Jaeger KM, Titzmann A, Pontones C, Huebner H, et al. Smartphone-based colorimetric analysis of urine test strips for at-home prenatal care. Ieee J Transl Eng Health Med. 2022;10:2800109.

    Article 
    PubMed 

    Google Scholar
     

  • Ning Q, Zheng W, Xu H, Zhu A, Li T, Cheng Y, et al. Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning. Anal Bioanal Chem. 2022;414(13):3959–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thakur R, Maheshwari P, Datta SK, Dubey SK, Shakher C. Machine learning-based rapid diagnostic-test reader for albuminuria using smartphone. Ieee Sens J. 2021;21(13):14011–26.

    Article 

    Google Scholar
     

  • Kibria IE, Ali H, Khan SA. Smartphone-based point-of-care urinalysis assessment. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:3374–7.

    PubMed 

    Google Scholar
     

  • Geng Z, Miao Y, Zhang G, Liang X. Colorimetric biosensor based on smartphone: state-of-art. Sens Actuators -Phys. 2023;349:114056.

    Article 
    CAS 

    Google Scholar
     

  • Mutlu AY, Kılıç V, Özdemir GK, Bayram A, Horzum N, Solmaz ME. Smartphone-based colorimetric detection via machine learning. Analyst. 2017;142(13):2434–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thakur R, Maheshwari P, Datta SK, Dubey SK. Smartphone-based, automated detection of urine albumin using deep learning approach. Measurement. 2022;194: 110948.

    Article 

    Google Scholar
     

  • Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment Anything. 2023. arXiv:230402643.

  • Delanghe J, Speeckaert M. Preanalytical requirements of urinalysis. Biochem Medica. 2014;24(1):89–104.

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *