Uncategorized

Large Language Models Can Self-Correct with Tool-Interactive Critiquing



Download a PDF of the paper titled CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing, by Zhibin Gou and 6 other authors

Download PDF

Abstract:Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially “black boxes” to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.

Submission history

From: Zhibin Gou [view email]
[v1]
Fri, 19 May 2023 15:19:44 UTC (465 KB)
[v2]
Sat, 30 Sep 2023 08:35:29 UTC (646 KB)
[v3]
Fri, 16 Feb 2024 08:17:39 UTC (653 KB)



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *