Uncategorized

Embodied human language models vs. Large Language Models, or why Artificial Intelligence cannot explain the modal be able to



  • Barbieri, M. (2007). The codes of life: The rules of macroevolution. Springer.


    Google Scholar
     

  • Berto, F. (2022). Topics of thought: The logic of knowledge, belief, imagination. Oxford University Press.

    Book 

    Google Scholar
     

  • Boghossian, P., & Williamson, T. (2020). Debating the A priori. Oxford University Press.

    Book 

    Google Scholar
     

  • Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., … Leskovec, J. (2022). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258

  • Cappelle, B., & Depraetere, I. (2016). Short-circuited interpretations of modal verb constructions: Some evidence from The Simpsons. Constructions and Frames, 8(1), 7–39. https://doi.org/10.1075/cf.8.1.02cap

    Article 

    Google Scholar
     

  • Cappelle, B., Depraetere, I., & Lesuisse, M. (2019). The necessity modals have to, must, need to and should: Using n-grams to help identify common and distinct semantic and pragmatic aspects. Constructions and Frames, 11(2), 220–243. https://doi.org/10.1075/cf.00028.cap

    Article 

    Google Scholar
     

  • Cappelle, B., De Cuypere, L., Depraetere, I., Grandin, C., & Leclercq, B. (2023). Possibility modals: Which conditions make them possible? In S. M. Fitzmaurice & B. Kortmann (Eds.), Models of modals: from pragmatics and corpus linguistics to machine learning (pp. 93–117). De Gruyter Mouton.

    Chapter 

    Google Scholar
     

  • Chomsky, N., Gallego, Á. J., & Ott, D. (2019). Generative grammar and the faculty of language: insights, questions, and challenges. Catalan Journal of Linguistics, Special Issue, 229–261. https://doi.org/10.5565/rev/catjl.288

  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477

    Article 
    PubMed 

    Google Scholar
     

  • Coghlan, S., & Parker, C. (2023). Harm to non-human animals from AI: A systematic account and framework. Philosophy and Technology, 36. https://doi.org/10.1007/s13347-023-00627-6

  • Davies, M. (2008). The Corpus of Contemporary American English (COCA): 520 Million Words, 1990-Present. Available online at http://corpus.byu.edu/coca/

  • Depraetere, I., Cappelle, B., & Hilpert, M. (2023). Introduction. In S. M. Fitzmaurice & B. Kortmann (Eds.), Models of modals: from pragmatics and corpus linguistics to machine learning (pp. 1–13). De Gruyter Mouton.


    Google Scholar
     

  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American chapter of the association for computational linguistics: human language technologies, Vol. 1 (Long and Short Papers) (pp. 4171–4186). Association for Computational Linguistics.

  • Divjak, D., Romain, L., & Milin, P. (2023). From their point of view: The article category as a hierarchically structured referent tracking system. Linguistics. https://doi.org/10.1515/ling-2022-0186

    Article 

    Google Scholar
     

  • Ez-zizi, A., Divjak, D., & Milin, P. (2023). Error-Correction Mechanisms in Language Learning: Modeling Individuals. Language Learning, 1–37. https://doi.org/10.1111/lang.12569

  • Favareau, D. (2009). Essential readings in biosemiotics: Anthology and commentary. Springer.

    Book 

    Google Scholar
     

  • Flach, S., Cappelle, B., & Hilpert, M. (2023). You must/have to choose: Experimenting with choices between near-synonymous modals. In S. M. Fitzmaurice & B. Kortmann (Eds.), Models of modals: from pragmatics and corpus linguistics to machine learning (pp. 149–176). De Gruyter Mouton.

    Chapter 

    Google Scholar
     

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.


    Google Scholar
     

  • Gibson, J. J. (1977). The ecological approach to visual perception. Houghton Mifflin.


    Google Scholar
     

  • Goldberg, A. E. (1995). Constructions: A Construction Grammar Approach to Argument Structure. University of Chicago Press.


    Google Scholar
     

  • Goldberg, A. E. (2006). Constructions at Work: The Nature of generalization in language. Oxford University Press.


    Google Scholar
     

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London, 360, 815–836. https://doi.org/10.1098/rstb.2005.1622

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friston, K. (2009). The Free-Energy Principle: A rough guide to the brain? Trends in Cognitive Science, 13, 293–301. https://doi.org/10.1016/j.tics.2009.04.005

    Article 

    Google Scholar
     

  • Grabar, Hamon, & Leclercq, T. L. (2023). Modals as a predictive factor for L2 proficiency level. In S. M. Fitzmaurice & B. Kortmann (Eds.), Models of modals: from pragmatics and corpus linguistics to machine learning (pp. 199–224). DeGruyter Mouton.

    Chapter 

    Google Scholar
     

  • Hilpert, M. (2013). Die englischen Modalverben im Daumenkino: Zur dynamischen Visualisierung von Phänomenen des Sprachwandels. Zeitschrift Für Literaturwissenschaft Und Linguistik, 42, 67–82.


    Google Scholar
     

  • Hilpert, M., & Perek, F. (2022). You don’t get to see that every day: On the development of permissive get. Constructions and Frames, 14(1), 13–40. https://doi.org/10.1075/cf.20011.hil

    Article 

    Google Scholar
     

  • Hilpert, M., & Flach, S. (2023). Modals in the network model of construction grammar. In S. M. Fitzmaurice & B. Kortmann (Eds.), Models of modals: from pragmatics and corpus linguistics to machine learning (pp. 254–269). DeGruyter Mouton.

    Chapter 

    Google Scholar
     

  • Hoffemeyer, J. (2008). Biosemiotics: An examination into the signs of life and life of signs. University of Scranton Press.


    Google Scholar
     

  • Huber, E., Sauppe, S., Isasi-Isasmendia, A., Bornkessel-Schlesewsky, I., Merlo, P., & Bickela, B. (2023). Surprisal from language models can predict ERPs in processing predicate-argument structures only if enriched by an Agent Preference principle. Neurobiology of Language. Advance publication. https://doi.org/10.1162/nol_a_00121

  • Hufeld, C., & Schmid, H. J. (2023). Does the intersubjectivity of modal verbs boost inter-individual differences? In S. M. Fitzmaurice & B. Kortmann (Eds.), Models of modals: from pragmatics and corpus linguistics to machine learning (pp. 177–196). DeGruyter Mouton.

    Chapter 

    Google Scholar
     

  • Jackendoff, R. (2012). A user’s guide to thought and meaning. Oxford University Press.


    Google Scholar
     

  • Jary, M. (2022). Nothing is said: Utterance and interpretation. Oxford University Press.

    Book 

    Google Scholar
     

  • Jiang, N., & Nekrasova, T. M. (2007). The processing of formulaic sequences by second language speakers. The Modern Language Journal, 91(3), 433–445. https://doi.org/10.1111/j.1540-4781.2007.00621.x

    Article 

    Google Scholar
     

  • Leclercq, B., & Depraetere, I. (2021). Making meaning with be able to: Modality and actualisation. English Language and Linguistics, 26(1), 27–48. https://doi.org/10.1017/S1360674320000341

    Article 

    Google Scholar
     

  • Leone, M. (2023). The main tasks of a semiotics of artificial Intelligence. Language and Semiotic Studies. https://doi.org/10.1515/lass-2022-0006

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, D. (2002). Convention: A philosophical study. Blackwell Publishers.

    Book 

    Google Scholar
     

  • Linzen, T., & Baroni, M. (2021). Syntactic Structure from Deep Learning. Annual Review of Linguistics, 7(1), 195–212. https://doi.org/10.1146/annurev-linguistics-011619-030303

    Article 

    Google Scholar
     

  • Ludlow, P., & Živanović, S. (2022). Language, form, and logic: In pursuit of Natural Logic’s Holy Grail. Oxford University Press.

    Book 

    Google Scholar
     

  • Magnani, L. (2018). Eco-Cognitive Computationalism: From mimetic minds to morphology-based enhancement of mimetic bodies. Entropy, 20, 430. https://doi.org/10.3390/e20060430

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nekrasova, T. M. (2009). English L1 and L2 speakers’ knowledge of lexical bundles. Language Learning, 59(3), 647–686. https://doi.org/10.1111/j.1467-9922.2009.00524.x

    Article 

    Google Scholar
     

  • Nowakowski, P. (2017). Bodily processing: The role of morphological computation. Entropy, 19, 295. https://doi.org/10.3390/e19070295

    Article 
    ADS 

    Google Scholar
     

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton University Press.


    Google Scholar
     

  • Parfit, D. (1984). Reasons and persons. Oxford University Press.


    Google Scholar
     

  • Peng, Y., Wang, Z., Zhang, Q., Du, S., Zhao, Y., Yang, L., Liu, J., Cheng, Y., Wang, A., & Liu, Y. (2019). Basic research on wireless remote control rabbit animal robot movement. In H. Yu, J. Liu, L. Liu, Z. Ju, Y. Liu, & D. Zhou (Eds.), Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science, vol. 11741. Springer, Cham. https://doi.org/10.1007/978-3-030-27532-7_4

  • Petrilli, S., & Ponzio, A. (2015). Language as primary modeling and natural languages: A biosemiotic perspective. In E. Velmezova, K. Kull, & S. J. Cowley (Eds.), Biosemiotic perspectives on language and linguistics (pp. 47–76). Springer.

    Chapter 

    Google Scholar
     

  • Piantadosi, S. (2023). Modern language models refute Chomsky’s approach to language. LingBuzz. Retrieved from https://lingbuzz.net/lingbuzz/007180

  • Pietarinen, A-V, & Beni, M. (2021). Active Inference and abduction. Biosemiotics, 499–517. https://doi.org/10.1007/s12304-021-09432-0

  • Romanini, V, & Lacková, L. (2023). Morphoesthetics in artificial intelligence: proteins versus machines. Transdisciplinary Journal of Linguistics. : https://doi.org/10.53987/2178-5368-2023-12-08

  • Romano, D., Donati, E., Benelli, G., & Stefanini, C. (2018). A review on animal–robot interaction: From bio-hybrid organisms to mixed societies. Biological Cybernetics. https://doi.org/10.1007/s00422-018-0787-5

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2, Article 420. https://doi.org/10.1007/s42979-021-00711-3

  • Schmid, H.-J. 2020. The dynamics of the linguistic system. Usage, conventionalization, and entrenchment. Oxford University Press. https://doi.org/10.1093/oso/9780198814771.001.0001

  • Sharov, A. (2018). Mind, agency, and biosemiotics. Journal of Cognitive Science, 19(2), 195–228.

    Article 

    Google Scholar
     

  • Sharov, A., & Tønnessen, M. (2021). Semiotic agency: Science beyond mechanism. Springer Nature.

    Book 

    Google Scholar
     

  • Silvennoinen, O. (2023). Is construction grammar cognitive? Constructions, 15 (1). https://doi.org/10.24338/cons-544

  • Tønnessen, M. (2015). Introduction: The relevance of Uexküll’s Umwelt theory today. In C. Brentari (Ed.), Jakob von Uexküll: The discovery of the Umwelt between Biosemiotics and theoretical biology (pp. 1–19). Springer.


    Google Scholar
     

  • Torres-Martínez, S. (2018). Constructions as triads of form, function and agency: An agentive cognitive construction grammar analysis of English modals. Cognitive Semantic, 4(1), 1–38.

    Article 

    Google Scholar
     

  • Torres-Martínez, S. (2021). Complexes, rule-following, and language games: Wittgenstein’s philosophical method and its relevance to semiotics. Semiotica, 242, 63–100.

    Article 

    Google Scholar
     

  • Torres-Martínez, S. (2023a). A radical embodied characterization of German Modals. Cognitive Semantics, 9(1), 132–168.

    Article 

    Google Scholar
     

  • Torres-Martínez, S. (2023b). An Integrated Bayesian-Heuristic semiotic model for understanding human and SARS-CoV-2 representational structures. Biosemiotics. https://doi.org/10.1007/s12304-023-09546-7

    Article 

    Google Scholar
     

  • Torres-Martínez, S. (2024). Agentive Cognitive Construction Grammar: A predictive semiotic theory of mind and language. Semiotica (Accepted manuscript). https://doi.org/10.1515/sem-2018-0138

  • Wang, J., Chen, W., Xiao, X., Xu, Y., Li, C., Jia, X., & Meng, M.Q.-H. (2021). A survey of the development of biomimetic intelligence and robotics. Biomimetic Intelligence and Robotics. https://doi.org/10.1016/j.birob.2021.100001

    Article 

    Google Scholar
     

  • Wilson, M. (2022). Imitation of Rigor: An alternative history of analytic philosophy. Oxford University Press.


    Google Scholar
     

  • Winter, B., Fischer, M. H., Scheepers, C., & Myachykov, A. (2023). More is better: English language statistics are biased toward addition. Cognitive Science, 47, e13254. https://doi.org/10.1111/cogs.13254

    Article 
    PubMed 

    Google Scholar
     

  • Wittgenstein, L. (1984). Werkausgabe, Band 1: Tractatus Logico-Philosophicus/Tagebücher 1914–1916 /Philosophische Untersuchungen. Suhrkamp Verlag

  • Woodin, G., Winter, B., Littlemore, J., Perlman, M., & Grieve, J. (2023). Large-scale patterns of number use in spoken and written English. Corpus Linguistics and Linguistic Theory. https://doi.org/10.1515/cllt-2022-0082

    Article 

    Google Scholar
     

  • Zhou, Z., Mei, H., Li, R., Wang, C., Fang, K., Wang, W., Tang, Y., & Dai, Z. (2022). Progresses of animal robots: A historical review and perspectiveness. Heliyon, 8, e11499. https://doi.org/10.1016/j.heliyon.2022.e11499

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *