Uncategorized

Discernment of transformer oil stray gassing anomalies using machine learning classification techniques



  • Poonnoy, N., Suwanasri, C. & Suwanasri, T. Neural network approach to dissolved gas analysis for fault analysis in power transformers. In 2022 International Electrical Engineering Congress (iEECON) (eds Poonnoy, N. et al.) 1–4 (IEEE, 2022).


    Google Scholar
     

  • Jia, J. et al. Validity evaluation of transformer DGA online monitoring data in grid edge systems. IEEE Access 8, 60759–60768 (2020).

    Article 

    Google Scholar
     

  • Wang, L., Littler, T. & Liu, X. Gaussian process multi-class classification for transformer fault diagnosis using dissolved gas analysis. IEEE Trans. Dielectr. Electr. Insul. 28(5), 1703–1712 (2021).

    Article 

    Google Scholar
     

  • Gouda, O. E., El-Hoshy, S. H. & Ghoneim, S. S. Enhancing the diagnostic accuracy of DGA techniques based on IEC-TC10 and related databases. IEEE Access 9, 118031–118041 (2021).

    Article 

    Google Scholar
     

  • Cui, H. et al. Impact of load ramping on power transformer dissolved gas analysis. IEEE Access 7, 170343–170351 (2019).

    Article 

    Google Scholar
     

  • Emara, M. M., Peppas, G. D. & Gonos, I. F. Two graphical shapes based on DGA for power transformer fault types discrimination. IEEE Trans. Dielectr. Electr. Insul. 28(3), 981–987 (2021).

    Article 

    Google Scholar
     

  • Huang, X., Yuan, Y. and Li, J. A review of transformer fault diagnosis based on information system theory and machine learning (2023).

  • Islam, N. et al. Power transformer health condition evaluation: A deep generative model aided intelligent framework. Electr. Power Systems Res. 218, 109201 (2023).

    Article 

    Google Scholar
     

  • Kang, Y., Park, H., Smit, B. & Kim, J. A multi-modal pre-training transformer for universal transfer learning in metal-organic frameworks. Nat. Mach. Intell. 5(3), 309–318 (2023).

    Article 

    Google Scholar
     

  • Faiz, J. & Soleimani, M. Assessment of computational intelligence and conventional dissolved gas analysis methods for transformer fault diagnosis. IEEE Trans. Dielectr. Electr. Insul. 25(5), 1798–1806 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Buchacz, T., Buchacz, J. & Duval, M. Stray gassing of oil in HV transformers. IEEE Trans. Dielectr. Electr. Insul. 28(5), 1729–1734 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Maccartney, G. R., Rappaport, T. S., Samimi, M. K. & Sun, S. Millimeter-wave omnidirectional path loss data for small cell 5G channel modeling. IEEE Access 3, 1573–1580 (2015).

    Article 

    Google Scholar
     

  • Taha, I. B., Ibrahim, S. & Mansour, D.-E.A. Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements. IEEE Access 9, 111162–111170 (2021).

    Article 

    Google Scholar
     

  • Duval, M. & Buchacz, J. Identification of arcing faults in paper and oil in transformers—Part I: Using the Duval pentagons. IEEE Electr. Insul. Mag. 38(1), 19–23 (2021).

    Article 

    Google Scholar
     

  • Yang, D., Qin, J., Pang, Y. & Huang, T. A novel double-stacked autoencoder for power transformers DGA signals with an imbalanced data structure. IEEE Trans. Ind. Electron. 69(2), 1977–1987 (2021).

    Article 

    Google Scholar
     

  • Camponogara, E., Jia, D., Krogh, B. H. & Talukdar, S. Distributed model predictive control. IEEE Control Syst. Mag. 22(1), 44–52 (2002).

    Article 

    Google Scholar
     

  • Tra, V., Duong, B.-P. & Kim, J.-M. Improving the diagnostic performance of a power transformer using an adaptive over-sampling method for imbalanced data. IEEE Trans. Dielectr. Electr. Insul. 26(4), 1325–1333 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Z., Li, C., Rong, Z. & Qi, B. DGA warning values for PD defects obtained from normal data analysis on a transformer experimental platform. IEEE Trans. Dielectr. Electr. Insul. 28(5), 1759–1766 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Wang, Z., Liu, Q. & Dyer, P. Dissolved gas analysis of thermal faults in transformer liquids simulated using the immersed heating method. IEEE Trans. Dielectr. Electr. Insul. 25(5), 1749–1757 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ali, M. S., Omar, A., Jaafar, A. S. A. & Mohamed, S. H. Conventional methods of dissolved gas analysis using oil-immersed power transformer for fault diagnosis: A review. Electr. Power Syst. Res. 216, 109064 (2023).

    Article 

    Google Scholar
     

  • Raj, R. A., Sarathkumar, D., Andrews, L. J. B. & Venkatachary, S. K. Key gases in transformer oil–an analysis using self organizing map (SOM) neural networks. In 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT) (eds Raj, R. A. et al.) 642–647 (IEEE, 2023).

    Chapter 

    Google Scholar
     

  • Han, X. et al. A transformer condition recognition method based on dissolved gas analysis features selection and multiple models fusion. Eng. Appl. Artif. Intell. 123, 106518 (2023).

    Article 

    Google Scholar
     

  • Shutenko, O. & Kulyk, O. Recognition of low-temperature overheating in power transformers by dissolved gas analysis. Electr. Eng. 104(4), 2109–2121 (2022).

    Article 

    Google Scholar
     

  • Soni, R. & Mehta, B. Diagnosis and prognosis of incipient faults and insulation status for asset management of power transformer using fuzzy logic controller & fuzzy clustering means. Electr. Power Syst. Res. 220, 109256 (2023).

    Article 

    Google Scholar
     

  • Ekojono, Prasojo, R. A., Apriyani, M. E. & Rahmanto, A. N. Investigation on machine learning algorithms to support transformer dissolved gas analysis fault identification. Electr. Eng. 104(5), 3037–3047 (2022).

    Article 

    Google Scholar
     

  • Banshwar, A., Kumar Sharma, N., Pathak, M., Sharma, B. B. & Kumar, S. An investigation to different methods of health assessment in power transformers. In Advances in Mechanical and Materials Technology: Select Proceedings of EMSME 2020 (eds Govindan, K. et al.) 749–756 (Springer, 2022).

    Chapter 

    Google Scholar
     

  • Velásquez, R. M. A. Support vector machine and tree models for oil and Kraft degradation in power transformers. Eng. Fail. Anal. 127, 105488 (2021).

    Article 

    Google Scholar
     

  • Liu, J. et al. Classifying transformer winding deformation fault types and degrees using FRA based on support vector machine. IEEE Access 7, 112494–112504 (2019).

    Article 

    Google Scholar
     

  • Wu, Y., Sun, X., Dai, B., Yang, P. & Wang, Z. A transformer fault diagnosis method based on hybrid improved grey wolf optimization and least squares-support vector machine. IET Gen. Transm. Distrib. 16(10), 1950–1963 (2022).

    Article 

    Google Scholar
     

  • Alqudsi, A. & El-Hag, A. Application of machine learning in transformer health index prediction. Energies 12(14), 2694 (2019).

    Article 

    Google Scholar
     

  • Moradzadeh, A. & Pourhossein, K. Application of support vector machines to locate minor short circuits in transformer windings. In 2019 54th International Universities Power Engineering Conference (UPEC) (eds Moradzadeh, A. & Pourhossein, K.) 1–6 (IEEE, 2019).


    Google Scholar
     

  • Guo, Y., Mustafaoglu, Z. & Koundal, D. Spam detection using bidirectional transformers and machine learning classifier algorithms. J. Comput. Cogn. Eng. 2(1), 5–9 (2023).


    Google Scholar
     

  • Liu, Y., Li, J., Li, Z., Qiao, L., Chen, S. and Lv, X. Transformer fault diagnosis model based on iterative nearest neighbor interpolation and ensemble learning. In Proc. of the 2019 2nd International Conference on Data Science and Information Technology, 140–146 (2019).

  • Li, Z. et al. Fault diagnosis of transformer windings based on decision tree and fully connected neural network. Energies 14(6), 1531 (2021).

    Article 

    Google Scholar
     

  • Xu, Y., Zhou, C., Geng, J., Gao, S. & Wang, P. A method for diagnosing mechanical faults of on-load tap changer based on ensemble empirical mode decomposition, Volterra model and decision acyclic graph support vector machine. IEEE Access 7, 84803–84816 (2019).

    Article 

    Google Scholar
     

  • Zhong, M. et al. Dissolved gas in transformer oil forecasting for transformer fault evaluation based on HATT-RLSTM. Electr. Power Syst. Res. 221, 109431 (2023).

    Article 

    Google Scholar
     

  • Shahbazi, N., Bagheri, S. & Gharehpetian, G. Identification and classification of cross-country faults in transformers using K-NN and tree-based classifiers. Electr. Power Syst. Res. 204, 107690 (2022).

    Article 

    Google Scholar
     

  • Sinduja, M., Maheswari, R. & Vigneshwaran, B. Transformer oil quality assessment using machine learning techniques. In 2022 International Conference on Computer Communication and Informatics (ICCCI) (eds Sinduja, M. et al.) 1–5 (IEEE, 2022).


    Google Scholar
     

  • En, B. 60599: 2016. Mineral oil-filled electrical equipment in service. Guidance on the interpretation of dissolved and free gases analysis [Electronic resource]. British Standards Institute (2016).

  • Ma, H., Saha, T. K., Ekanayake, C. & Martin, D. Smart transformer for smart grid—Intelligent framework and techniques for power transformer asset management. IEEE Trans. Smart Grid 6(2), 1026–1034 (2015).

    Article 

    Google Scholar
     

  • Soto, A. R., Lima, S. L. & Saavedra, O. R. Incipient fault diagnosis in power transformers by DGA using a machine learning ANN-mean shift approach. In 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (eds Soto, A. R. et al.) 1–6 (IEEE, 2019).


    Google Scholar
     

  • Patekar, K. D. & Chaudhry, B. DGA analysis of transformer using Artificial neural network to improve reliability in Power Transformers. In 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON) (eds Patekar, K. D. & Chaudhry, B.) 1–5 (IEEE, 2019).


    Google Scholar
     

  • Hussein, A. R., Dakhil, A. M., Rashed, J. R. & Othman, M. Intelligent expert system for diagnosing faults and assessing quality of power transformer insulation oil by DGA method. Misan J. Eng. Sci. 1(1), 47–57 (2022).

    Article 

    Google Scholar
     

  • Badawi, M. et al. Reliable estimation for health index of transformer oil based on novel combined predictive maintenance techniques. IEEE Access 10, 25954–25972 (2022).

    Article 

    Google Scholar
     

  • Cui, H., Jia, P., Peng, X. & Li, P. Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: A DFT study. Mater. Chem. Phys. 249, 123006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Littler, T. & Liu, X. Hybrid AI model for power transformer assessment using imbalanced DGA datasets. IET Renew. Power Gen. 17, 1912–1922 (2023).

    Article 

    Google Scholar
     

  • Demirci, M., Gözde, H. & Taplamacioglu, M. C. Improvement of power transformer fault diagnosis by using sequential Kalman filter sensor fusion. Int. J. Electr. Power Energy Syst. 149, 109038 (2023).

    Article 

    Google Scholar
     

  • Shutenko, O., Proskurnia, O. & Abramov, V. Comparative analysis of risks which are accompanied by the use of typical and boundary gases concentrations for the diagnostics of high voltage transformers. Energetika https://doi.org/10.6001/energetika.v64i3.3806 (2018).

    Article 

    Google Scholar
     

  • Jiang, J. et al. Dynamic fault prediction of power transformers based on lasso regression and change point detection by dissolved gas analysis. IEEE Trans. Dielectr. Electr. Insul. 27(6), 2130–2137 (2020).

    Article 

    Google Scholar
     

  • Dhini, A., Faqih, A., Kusumoputro, B., Surjandari, I. & Kusiak, A. Data-driven fault diagnosis of power transformers using dissolved gas analysis (DGA). Int. J. Technol. 11(2), 388–399 (2020).

    Article 

    Google Scholar
     

  • Li, S. et al. Interpretation of DGA for transformer fault diagnosis with complementary SaE-ELM and arctangent transform. IEEE Trans. Dielectr. Electr. Insul. 23(1), 586–595 (2016).

    Article 

    Google Scholar
     

  • Nemeth, B., Laboncz, S. & Kiss, I. Condition monitoring of power transformers using DGA and fuzzy logic. In 2009 IEEE Electrical Insulation Conference (eds Nemeth, B. et al.) 373–376 (IEEE, 2009).

    Chapter 

    Google Scholar
     

  • Zhang, Y. et al. Power transformer fault diagnosis considering data imbalance and data set fusion. High Voltage 6(3), 543–554 (2021).

    Article 

    Google Scholar
     

  • El-kenawy, E.-S.M. et al. Feature selection and classification of transformer faults based on a novel meta-heuristic algorithm. Mathematics 10(17), 3144 (2022).

    Article 

    Google Scholar
     

  • Mollmann, A. & Pahlavanpour, B. New guidelines for interpretation of dissolved gas analysis in oil-filled transformers. Electra 186, 31–51 (1999).


    Google Scholar
     

  • Bohatyrewicz, P. & Banaszak, S. Assessment criteria of changes in health index values over time—A transformer population study. Energies 15(16), 6078 (2022).

    Article 

    Google Scholar
     

  • Jongen, R., Morshuis, P., Smit, J., Janssen, A. & Gulski, E. A statistical approach to processing power transformer failure data. In 19th International Conference on Electricity Distribution Vol. 4 (eds Jongen, R. et al.) (Cired, 2007).


    Google Scholar
     

  • Bustamante, S. et al. Dissolved gas analysis equipment for online monitoring of transformer oil: A review. Sensors 19(19), 4057 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakar, N. A., Abu-Siada, A. & Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 30(3), 39–49 (2014).

    Article 

    Google Scholar
     

  • Kim, Y., Lee, S., Seo, H., Jung, J. & Yang, H. Development of dissolved gas analysis (DGA) expert system using a new diagnostic algorithm for oil-immersed transformers. In 2012 IEEE International Conference on Condition Monitoring and Diagnosis (eds Kim, Y. et al.) 365–369 (IEEE, 2012).

    Chapter 

    Google Scholar
     

  • Zhao, A.-X., Tang, X.-J., Zhang, Z.-H. & Liu, J.-H. The DGA interpretation method using relative content of characteristic gases and gas-ratio combinations for fault diagnosis of oil-immersed power transformers. In Proceedings of 2014 International Symposium on Electrical Insulating Materials (eds Zhao, A.-X. et al.) 124–127 (IEEE, 2014).

    Chapter 

    Google Scholar
     

  • Faiz, J. & Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional methods a review. IEEE Trans. Dielectr. Electr. Insul. 24(2), 1239–1248 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Endo, F. et al. Analysis of gasses generated by electrical discharges in low viscosity silicone oil. In 2008 International Conference on Condition Monitoring and Diagnosis (eds Endo, F. et al.) 272–275 (IEEE, 2008).

    Chapter 

    Google Scholar
     

  • Oehlmann, K. & Mao, L. Evaluation of distribution network transformer dissolved gas analysis (DGA) data. In PES T&D 2012 (eds Oehlmann, K. & Mao, L.) 1–4 (IEEE, 2012).


    Google Scholar
     

  • Abbasi, A. R. Fault detection and diagnosis in power transformers: A comprehensive review and classification of publications and methods. Electr. Power Syst. Res. 209, 107990 (2022).

    Article 

    Google Scholar
     

  • IEC. Mineral Oil-Impregnated Electrical Equipment in Service-Guide to the Interpretation of Dissolved and Free Gases Analysis (CEI, 2015).


    Google Scholar
     

  • B. EN60599, “and IEC 60599: 1999 Mineral oil-impregnated electrical equipment in service guide to the interpretation of dissolved and free gases analysis,” British Standard Institute (BSI) and International Electrotechnical Commission (IEC) (1999).

  • Singh, J., Singh, S. & Singh, A. Distribution transformer failure modes, effects and criticality analysis (FMECA). Eng. Fail. Anal. 99, 180–191 (2019).

    Article 

    Google Scholar
     

  • Fernández, I., Ortiz, A., Delgado, F., Renedo, C. & Perez, S. Comparative evaluation of alternative fluids for power transformers. Electr. Power Syst. Res. 98, 58–69 (2013).

    Article 

    Google Scholar
     

  • I. E. Commission, “International Standard IEC 60599: 1999+ A1: 2007, Mineral oil-impregnated electrical equipment in service–a guide to the interpretation of dissolved and free gases analysis (1999).

  • Landucci Júnior, A. Manutenção pré-corretiva em transformadores de potência: um novo conceito de manutenção (2017).

  • Babukutty, S. & Khule, S. Dissolved gas analysis: A proactive approach for recognization of faults in transformer using MATLAB GUI. J. Adv. Res. Signal Process. Appl. 1(2), 14–19 (2021).


    Google Scholar
     

  • Modi, M. M. & Patel, R. A. Intelligent approach to interpret incipient faults of power transformer from DGA database. J. Inst. Eng. (India) Ser. B 104, 1–8 (2023).


    Google Scholar
     

  • J. Costa, D. Silva, and P. Branco, “Large-Power Transformers: Time Now for Addressing Their Monitoring and Failure Investigation Techniques. Energies 2022, 15, 4697, ed: s Note: MDPI stays neutral about jurisdictional claims in published …, (2022).

  • Robalino, D. M. & Mahajan, S. M. Dissolved gas analysis of a thermally overloaded oil-immersed current transformer. In 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA) (eds Robalino, D. M. & Mahajan, S. M.) 645–652 (IEEE, 2010).

    Chapter 

    Google Scholar
     

  • Merita, A. K., Sharma, R. & Chauhan, S. Study and diagnosis of key gases to assess the condition of power transformers. In 2011 3rd International Conference on Electronics Computer Technology Vol. 4 (eds Merita, A. K. et al.) 343–347 (IEEE, 2011).

    Chapter 

    Google Scholar
     

  • Irungu, G., Akumu, A. & Munda, J. Fault diagnostics in oil-filled electrical equipment: Review of duval triangle and the possibility of alternatives. In 2016 IEEE Electrical Insulation Conference (EIC) (eds Irungu, G. et al.) 174–177 (IEEE, 2016).

    Chapter 

    Google Scholar
     

  • Putra, M. A. A., Prasojo, R. A., Novfowan, A. D. & Neelmani, N. Dissolved gas analysis of generator step up transformer in Grati power plant using random forest based method. J. Telecommun. Netw. (Jurnal Jaringan Telekomunikasi) 13(1), 51–58 (2023).

    Article 

    Google Scholar
     

  • Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 18(3), 8–17 (2002).

    Article 

    Google Scholar
     

  • Bulut, M. & Özcan, E. A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment. Reliab. Eng. Syst. Saf. 205, 107238 (2021).

    Article 

    Google Scholar
     

  • Saroja, S., Haseena, S. & Madhavan, R. Dissolved gas analysis of transformer: An approach based on ML and MCDM. IEEE Trans. Dielectr. Electr. Insul. https://doi.org/10.1109/TDEI.2023.3271609 (2023).

    Article 

    Google Scholar
     

  • Baker, E., Nese, S. V. & Dursun, E. Hybrid condition monitoring system for power transformer fault diagnosis. Energies 16(3), 1151 (2023).

    Article 

    Google Scholar
     

  • Manoj, T. & Ranga, C. An intelligence expert system for quality health monitoring of power transformers using testing attributes. Eng. Res. Express 5(2), 025033 (2023).

    Article 

    Google Scholar
     

  • Zhang, D. et al. Transformer maintenance decision based on condition monitoring and fuzzy probability hybrid reliability assessment. IET Gen. Transm. Distrib. 17(4), 976–992 (2023).

    Article 

    Google Scholar
     

  • Altayef, E., Anayi, F., Packianather, M., Benmahamed, Y. & Kherif, O. Detection and classification of lamination faults in A 15 kVA three-phase transformer core using SVM, KNN and DT algorithms. IEEE Access 10, 50925–50932 (2022).

    Article 

    Google Scholar
     

  • Han, X. et al. A novel power transformer fault diagnosis model based on harris-hawks-optimization algorithm optimized kernel extreme learning machine. J. Electr. Eng. Technol. 17(3), 1993–2001 (2022).

    Article 

    Google Scholar
     

  • Behkam, R., Karami, H., Naderi, M. S. & Gharehpetian, G. Condition monitoring of distribution transformers using frequency response traces and artificial neural network to detect the extent of windings axial displacements. In 2022 26th International Electrical Power Distribution Conference (EPDC) (eds Behkam, R. et al.) 18–23 (IEEE, 2022).

    Chapter 

    Google Scholar
     

  • Jiang, J., Chen, R., Chen, M., Wang, W. & Zhang, C. Dynamic fault prediction of power transformers based on hidden Markov model of dissolved gases analysis. IEEE Trans. Power Deliv. 34(4), 1393–1400 (2019).

    Article 

    Google Scholar
     

  • Ma, X., Hu, H. & Shang, Y. A new method for transformer fault prediction based on multi-feature enhancement and refined long short-term memory. IEEE Trans. Instrum. Meas. 70, 1–11 (2021).


    Google Scholar
     

  • Li, J., Li, G., Hai, C. & Guo, M. Transformer fault diagnosis based on multi-class AdaBoost algorithm. IEEE Access 10, 1522–1532 (2021).

    Article 

    Google Scholar
     

  • Rodríguez, J., Contreras, J. & Gaytán, C. Evaluation and interpretation of dissolved gas analysis of soybean-based natural ester insulating liquid. IEEE Trans. Dielectr. Electr. Insul. 28(4), 1343–1348 (2021).

    Article 

    Google Scholar
     

  • Laayati, O. et al. Toward smarter power transformers in microgrids: A multi-agent reinforcement learning for diagnostic. In Digital Technologies and Applications: Proceedings of ICDTA’23, Fez, Morocco Vol. 2 (eds Motahhir, S. & Bossoufi, B.) 640–649 (Springer, 2023).

    Chapter 

    Google Scholar
     

  • Li, J., Hai, C., Feng, Z. & Li, G. A transformer fault diagnosis method based on parameters optimization of hybrid kernel extreme learning machine. IEEE Access 9, 126891–126902 (2021).

    Article 

    Google Scholar
     

  • Boonsaner, N., Chancharoensook, P., Bunnag, C., Suwantaweesuk, A. & Vongphanich, K. The study and analysis of oil-immersed power transformer by using artificial neural network for designing program apply in the industry of testing oil-immersed transformers. In 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD) (eds Boonsaner, N. et al.) 274–277 (IEEE, 2020).

    Chapter 

    Google Scholar
     

  • Suksagoolpanya, S. et al. Dissolved gas analysis of palm oil compared with mineral oil from different types of breakdown voltage. In 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD) (eds Suksagoolpanya, S. et al.) 330–333 (IEEE, 2020).

    Chapter 

    Google Scholar
     

  • Shutenko, O. & Kulyk, O. Comparative analysis of the defect type recognition reliability in high-voltage power transformers using different methods of DGA results interpretation. In 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP) (eds Shutenko, O. & Kulyk, O.) 1–6 (IEEE, 2020).


    Google Scholar
     

  • Syafruddin, H. & Nugroho, H. P. Dissolved gas analysis (DGA) for diagnosis of fault in oil-immersed power transformers: A case study. In 2020 4th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM) (eds Syafruddin, H. & Nugroho, H. P.) 57–62 (IEEE, 2020).


    Google Scholar
     

  • Patel, R. & Thakur, H. Integrated fuzzy approach for incipient fault detection in power transformers. In 2016 IEEE Industrial Electronics and Applications Conference (IEACon) (eds Patel, R. & Thakur, H.) 211–218 (IEEE, 2016).

    Chapter 

    Google Scholar
     

  • Rai, A. S. & Maheshan, C. Artificial bee colony algorithm based interpretation of dissolved gas analysis. In 2019 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT) (eds Rai, A. S. & Maheshan, C.) 106–110 (IEEE, 2019).

    Chapter 

    Google Scholar
     

  • Mohamad, F., Hosny, K. & Barakat, T. Incipient fault detection of electric power transformers using fuzzy logic based on Roger’s and IEC method. In 2019 14th International Conference on Computer Engineering and Systems (ICCES) (eds Mohamad, F. et al.) 303–309 (IEEE, 2019).

    Chapter 

    Google Scholar
     

  • Ghoneim, S., Mansour, D., Bedir, I. & Alharthi, M. A decision transformer fault diagnostics system based on dissolved gas analysis. In 2019 21st International Middle East Power Systems Conference (MEPCON) (eds Ghoneim, S. et al.) 76–80 (IEEE, 2019).

    Chapter 

    Google Scholar
     

  • Zeng, B. et al. A transformer fault diagnosis model based on hybrid grey wolf optimizer and LS-SVM. Energies 12(21), 4170 (2019).

    Article 

    Google Scholar
     

  • Benmahamed, Y., Teguar, M. & Boubakeur, A. Diagnosis of power transformer oil using PSO-SVM and KNN classifiers. In 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) (eds Benmahamed, Y. et al.) 1–4 (IEEE, 2018).


    Google Scholar
     

  • Ghosh, A. & Banerjee, S. A comparison between classical and advanced controllers for a boost converter. In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (eds Ghosh, A. & Banerjee, S.) 1–6 (IEEE, 2018).


    Google Scholar
     

  • Zope, N., Ali, S. I., Padmanaban, S., Bhaskar, M. S. & Mihet-Popa, L. Analysis of 132kV/33kV 15MVA power transformer dissolved gas using transport-X Kelman Kit through Duval’s triangle and Roger’s Ratio prediction. In 2018 IEEE International Conference on Industrial Technology (ICIT) (eds Zope, N. et al.) 1160–1164 (IEEE, 2018).

    Chapter 

    Google Scholar
     

  • Hamid, M. et al. Dissolved gas analysis (DGA) of vegetable oils under electrical stress. In 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS) (eds Hamid, M. et al.) 29–34 (IEEE, 2017).

    Chapter 

    Google Scholar
     

  • Wattakapaiboon, W. & Pattanadech, N. The state of the art for dissolved gas analysis based on interpretation techniques. In 2016 International Conference on Condition Monitoring and Diagnosis (CMD) (eds Wattakapaiboon, W. & Pattanadech, N.) 60–63 (IEEE, 2016).

    Chapter 

    Google Scholar
     

  • Su, C. Q. A new fuzzy logic method for transformer incipient fault diagnosis. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (ed. Su, C. Q.) 324–327 (IEEE, 2016).

    Chapter 

    Google Scholar
     

  • Wannapring, E., Suwanasri, C. & Suwanasri, T. Dissolved gas analysis methods for distribution transformers. In 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (eds Wannapring, E. et al.) 1–6 (IEEE, 2016).


    Google Scholar
     

  • Illias, H. A. & Chai, X. R. Hybrid modified evolutionary particle swarm optimization-time varying acceleration coefficient-artificial neural network for power transformer fault diagnosis. Measurement 90, 94–102 (2016).

    Article 

    Google Scholar
     

  • Ghoneim, S. S., Taha, I. B. & Elkalashy, N. I. Integrated ANN-based proactive fault diagnostic scheme for power transformers using dissolved gas analysis. IEEE Trans. Dielectr. Electr. Insul. 23(3), 1838–1845 (2016).

    Article 

    Google Scholar
     

  • Bhalla, D., Bansal, R. K. & Gupta, H. O. Transformer incipient fault diagnosis based on DGA using fuzzy logic. In India International Conference on Power Electronics 2010 (IICPE2010) (eds Bhalla, D. et al.) 1–5 (IEEE, 2011).


    Google Scholar
     

  • Malik, H. & Mishra, S. Feature selection using RapidMiner and classification through a probabilistic neural network for fault diagnostics of power transformer. In 2014 Annual IEEE India Conference (INDICON) (eds Malik, H. & Mishra, S.) 1–6 (IEEE, 2014).


    Google Scholar
     

  • Nagpal, T. & Brar, Y. S. Neural network based transformer incipient fault detection. In 2014 International Conference on Advances in Electrical Engineering (ICAEE) (eds Nagpal, T. & Brar, Y. S.) 1–5 (IEEE, 2014).


    Google Scholar
     

  • Gómez, N., Wilhelm, H., Santos, C. & Stocco, G. Dissolved gas analysis (DGA) of natural ester insulating fluids with different chemical compositions. IEEE Trans. Dielectr. Electr. Insul. 21(3), 1071–1078 (2014).

    Article 

    Google Scholar
     

  • Ahmed, M., Geliel, M. & Khalil, A. Power transformer fault diagnosis using a fuzzy logic technique based on dissolved gas analysis. In 21st Mediterranean Conference on Control and Automation (eds Ahmed, M. et al.) 584–589 (IEEE, 2013).

    Chapter 

    Google Scholar
     

  • Mehta, A. K., Sharma, R., Chauhan, S. & Saho, S. Transformer diagnostics under dissolved gas analysis using support vector machine. In 2013 International Conference on Power, Energy, and Control (ICPEC) (eds Mehta, A. K. et al.) 181–186 (IEEE, 2013).

    Chapter 

    Google Scholar
     

  • Ghunem, R. A., Assaleh, K. & El-Hag, A. H. Artificial neural networks with stepwise regression for predicting transformer oil furan content. IEEE Trans. Dielectr. Electr. Insul. 19(2), 414–420 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Neyman, J. & Pearson, E. S. IX. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact. 231(694–706), 289–337 (1933).


    Google Scholar
     

  • Afrasiabi, S., Afrasiabi, M., Parang, B. & Mohammadi, M. Designing a composite deep learning based differential protection scheme of power transformers. Appl. Soft Comput. 87, 105975 (2020).

    Article 

    Google Scholar
     

  • Rajesh, K. N., Rao, U. M., Fofana, I., Rozga, P. & Paramane, A. Influence of data balancing on transformer DGA fault classification with machine learning algorithms. IEEE Trans. Dielectr. Electr. Insul. 30(1), 385–392 (2022).

    Article 

    Google Scholar
     

  • Shamsudin, M. S., Yakub, F., Shapiai, M. I., Mohmad, A. & Abd Hamid, N. A. Investigation on online DGA monitoring to determine transformer health index using machine learning. J. Phys. Conf. Ser. 2128(1), 012024 (2021).

    Article 

    Google Scholar
     

  • Singh, S., Raj, N., Gera, R. & Dinkar, A. National conference on the failure of major equipment’s of sub-station-case studies 23rd-24th February 2023, New Delhi. Water Energy Int. 65(12), 55–58 (2023).


    Google Scholar
     

  • Siregar, Y. & Lumbanraja, T. J. H. Analysis of interference methods on transformers based on the results of dissolved gas analysis tests. Int. J. Electr. Comput. Eng https://doi.org/10.11591/ijece.v13i4.pp3672-3685 (2023).

    Article 

    Google Scholar
     

  • Manoj, T., Ranga, C., Ghoneim, S. S., Rao, U. M. & Abdelwahab, S. A. M. Alternate and effective dissolved gas interpretation to understand the transformer incipient faults. IEEE Trans. Dielectr. Electr. Insul. https://doi.org/10.1109/TDEI.2023.3237795 (2023).

    Article 

    Google Scholar
     

  • Standard, I. Mineral Oil-Impregnated Electrical Equipment in SERVICE-GUIDE to the Interpretation of Dissolved and Free Gases Analysis (IEC, 2015).


    Google Scholar
     

  • Taha, I. B., Ghoneim, S. S. & Zaini, H. G. Improvement of Rogers four ratios and IEC Code methods for transformer fault diagnosis based on Dissolved Gas Analysis. In 2015 North American Power Symposium (NAPS) (eds Taha, I. B. et al.) 1–5 (IEEE, 2015).


    Google Scholar
     

  • Taha, I. B., Ghoneim, S. S. & Duaywah, A. S. Refining DGA methods of IEC Code and Rogers four ratios for transformer fault diagnosis. In 2016 IEEE Power and Energy Society General Meeting (PESGM) (eds Taha, I. B. et al.) 1–5 (IEEE, 2016).


    Google Scholar
     

  • Duval, M. Dissolved gas analysis: It can save your transformer. IEEE Electr. Insul. Mag. 5(6), 22–27 (1989).

    Article 

    Google Scholar
     

  • Duval, M. & Lamarre, L. The Duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers. IEEE Electr. Insul. Mag. 30(6), 9–12 (2014).

    Article 

    Google Scholar
     

  • International Electrotechnical Commission. Interpretation of the analysis of gases in transformers and other oil-filled electrical equipment in service. Publication 599, 21–25 (1978).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *