Uncategorized

Diffusive migration behavior of single atoms in aluminum alloy substrates: Explaining machine-learning-accelerated first principles calculations



  • Ganeshan S, HectorJr. LG, Liu ZK. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model. Acta Mater, 2011, 59: 3214–3228

    Article 
    CAS 

    Google Scholar
     

  • Leyson GPM, Curtin WA, HectorJr LG, et al. Quantitative prediction of solute strengthening in aluminium alloys. Nat Mater, 2010, 9: 750–755

    Article 
    CAS 

    Google Scholar
     

  • Curtin WA, Olmsted DL, HectorJr LG. A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nat Mater, 2006, 5: 875–880

    Article 
    CAS 

    Google Scholar
     

  • Lomaev IL, Novikov DL, Okatov SV, et al. First-principles study of 4d solute diffusion in nickel. J Mater Sci, 2014, 49: 4038–4044

    Article 
    CAS 

    Google Scholar
     

  • Janotti A, Krčmar M, Fu CL, et al. Solute diffusion in metals: Larger atoms can move faster. Phys Rev Lett, 2004, 92: 085901

    Article 
    CAS 

    Google Scholar
     

  • Naghavi SS, Hegde VI, Wolverton C. Diffusion coefficients of transition metals in fcc cobalt. Acta Mater, 2017, 132: 467–478

    Article 
    CAS 

    Google Scholar
     

  • Ardell AJ, Prikhodko SV. Coarsening of γ′ in Ni−Al alloys aged under uniaxial compression: II. Diffusion under stress and retardation of coarsening kinetics. Acta Mater, 2003, 51: 5013–5019

    Article 
    CAS 

    Google Scholar
     

  • Mantina M, Shang SL, Wang Y, et al. 3d transition metal impurities in aluminum: A first-principles study. Phys Rev B, 2009, 80: 184111

    Article 

    Google Scholar
     

  • Zhang X, Deng H, Xiao S, et al. First-principles calculation of self-diffusion coefficients in Ni3Al. J Alloys Compd, 2014, 612: 361–364

    Article 
    CAS 

    Google Scholar
     

  • Zhou BC, Shang SL, Wang Y, et al. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study. Acta Mater, 2016, 103: 573–586

    Article 
    CAS 

    Google Scholar
     

  • Huber L, Elfimov I, Rottler J, et al. Ab initio calculations of rare-earth diffusion in magnesium. Phys Rev B, 2012, 85: 4214–4218


    Google Scholar
     

  • Yang M, Lim MK, Qu Y, et al. Supply chain risk management with machine learning technology: A literature review and future research directions. Comput Industrial Eng, 2023, 175: 108859

    Article 

    Google Scholar
     

  • Wang X, Liu A, Kara S. Machine learning for engineering design toward smart customization: A systematic review. J Manufact Syst, 2022, 65: 391–405

    Article 
    CAS 

    Google Scholar
     

  • Chen L, Tian Y, Hu X, et al. A universal machine learning framework for electrocatalyst innovation: A case study of discovering alloys for hydrogen evolution reaction. Adv Funct Mater, 2022, 32: 2208418

    Article 
    CAS 

    Google Scholar
     

  • Chen A, Zhang X, Zhou Z. Machine learning: Accelerating materials development for energy storage and conversion. InfoMat, 2020, 2: 553–576

    Article 
    CAS 

    Google Scholar
     

  • Melnikov AA, Poulsen Nautrup H, Krenn M, et al. Active learning machine learns to create new quantum experiments. Proc Natl Acad Sci USA, 2018, 115: 1221–1226

    Article 
    CAS 

    Google Scholar
     

  • Manley K, Egoh BN. Mapping and modeling the impact of climate change on recreational ecosystem services using machine learning and big data. Environ Res Lett, 2022, 17: 054025

    Article 

    Google Scholar
     

  • Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater, 2016, 2: 16028

    Article 

    Google Scholar
     

  • Stein HS, Guevarra D, Newhouse PF, et al. Machine learning of optical properties of materials–predicting spectra from images and images from spectra. Chem Sci, 2019, 10: 47–55

    Article 
    CAS 

    Google Scholar
     

  • Li M, Zhang H, Li S, et al. Machine learning and materials informatics approaches for predicting transverse mechanical properties of unidirectional CFRP composites with microvoids. Mater Des, 2022, 224: 111340

    Article 
    CAS 

    Google Scholar
     

  • Qiao L, Liu Y, Zhu J. Application of generalized regression neural network optimized by fruit fly optimization algorithm for fracture toughness in a pearlitic steel. Eng Fract Mech, 2020, 235: 107105

    Article 

    Google Scholar
     

  • Huang J, Xue J, Li M, et al. Adsorption and modification behavior of single atoms on the surface of single vacancy graphene: Machine learning accelerated first principle computations. Appl Surf Sci, 2023, 635: 157757

    Article 
    CAS 

    Google Scholar
     

  • Takahashi K, Tanaka Y. Material synthesis and design from first principle calculations and machine learning. Comput Mater Sci, 2016, 112: 364–367

    Article 
    CAS 

    Google Scholar
     

  • Schütt KT, Glawe H, Brockherde F, et al. How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys Rev B, 2014, 89: 205118

    Article 

    Google Scholar
     

  • Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744

    Article 
    CAS 

    Google Scholar
     

  • Xu L, Zheng H, Xu B, et al. Suppressing nonradiative recombination by electron-donating substituents in 2D conjugated triphenylamine polymers toward efficient perovskite optoelectronics. Nano Lett, 2023, 23: 1954–1960

    Article 
    CAS 

    Google Scholar
     

  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1998, 77: 3865–3868

    Article 

    Google Scholar
     

  • Jones RO, Gunnarsson O. The density functional formalism, its applications and prospects. Rev Mod Phys, 1989, 61: 689–746

    Article 
    CAS 

    Google Scholar
     

  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article 
    CAS 

    Google Scholar
     

  • Li JL, Li YF, Liu ZP. Recent advances in electrochemical kinetics simulations and their applications in Pt based fuel cells. J Electrochem, 2022, 28: 2108511


    Google Scholar
     

  • Marsman M, Paier J, Stroppa A, et al. Hybrid functionals applied to extended systems. J Phys-Condens Matter, 2008, 20: 064201

    Article 
    CAS 

    Google Scholar
     

  • Huang J, Li M, Chen J, et al. Electronic structure and atomic migration of the fourth, fifth, and sixth period atoms in aluminum alloys: First principles calculation. Vacuum, 2023, 210: 111823

    Article 
    CAS 

    Google Scholar
     

  • Mu Y, Liu X, Wang L. A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf Sci, 2018, 435: 40–58

    Article 

    Google Scholar
     

  • Tang M, Zhang D, Wang D, et al. Performance prediction of 2D vertically stacked MoS2−WS2 heterostructures base on first-principles theory and Pearson correlation coefficient. Appl Surf Sci, 2022, 596: 153498

    Article 
    CAS 

    Google Scholar
     

  • Chen WC, Schmidt JN, Yan D, et al. Machine learning and evolutionary prediction of superhard B-C-N compounds. npj Comput Mater, 2021, 7: 114

    Article 

    Google Scholar
     

  • Sutojo T, Rustad S, Akrom M, et al. A machine learning approach for corrosion small datasets. npj Mater Degrad, 2023, 7: 1–8

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *