Uncategorized

Comparison of neural networks techniques to predict subsurface parameters based on seismic inversion: a machine learning approach


  • Ahmed N, Wiktor WW, Dario G (2022) Constrained non-linear AVO inversion based on the adjoint-state optimization. Comput Geosci 168:105214

    Article 

    Google Scholar
     

  • Ahmed N, Wiktor WW, Dario G, Tuhin B (2023) Constrained non-linear AVO inversion for dynamic reservoir changes estimation from time-lapse seismic data. Geophysics 89(1):1–65

    Article 

    Google Scholar
     

  • Alpaydin (2021) Ethem. Machine learning. Mit Press

  • Anifowose FA, Jane L, Abdulazeez A (2017) Ensemble machine learning: an untapped modeling paradigm for petroleum reservoir characterization. J Pet Sci Eng 151:480–487

    Article 

    Google Scholar
     

  • Artun E, Mohaghegh SD, Toro J, Wilson T, Sanchez A (2005) Reservoir characterization using intelligent seismic inversion. In: Proceedings of the SPE Eastern Regional Meeting, Morgantown, pp 14–16

  • Baddari K, Tahar A, Noureddine D, Jalal F (2009) Application of a radial basis function artificial neural network to seismic data inversion. Comput Geosci 12:2338–2344

    Article 

    Google Scholar
     

  • Banerjee A, Rima C (2022) Mapping of reservoir properties using model-based seismic inversion and neural network architecture in Raniganj basin, India. J Geol Soc India 4:479–486

    Article 

    Google Scholar
     

  • Bhatt A, Helle HB (2002) Committee neural networks for porosity and permeability prediction from well logs. Geophys Prospect 50(6):645–660

  • Chaki S (2015) Reservoir characterization: A machine learning approach, MS Thesis, Indian Institute of Technology, India, 98p

  • Choi RY, Coyner AS, Jayashree KC, Chiang MF, Campbell JP (2020) Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol 2:14-14

  • Dufour J, Squires J, Goodway WN, Edmunds A, Shook I (2002) Case History: Integrated geological and geophysical interpretation case study, and Lamé rock parameter extractions using AVO analysis on the Blackfoot 3C-3D seismic data, southern Alberta, Canada. Geophysics 67(1):27–37

  • Ecoublet P, Symes W (1998) Application of probabilistic neural network to porosity prediction. In: The rice inversion project, annual report. Rice University, Houston, TX

  • El Naqa I, Murphy MJ (2015) What is machine learning? Springer International Publishing

  • El-Dabaa SA, Farouk IM, Ahmed TA, Alhussein AB (2022) Prediction of porosity and water saturation using a probabilistic neural network for the Bahariya Formation, Nader Field, north western desert. Egypt J African Earth Sci 196:104638

    Article 

    Google Scholar
     

  • Feng R (2020) Estimation of reservoir porosity based on seismic inversion results using deep learning methods. J Nat Gas Sci Eng 77:103270

    Article 

    Google Scholar
     

  • Gao Z, Chuang L, Tao Y, Zhibin P, Jinghuai G, Zongben X (2020) OMMDE-Net: A deep learning-based global optimization method for seismic inversion. IEEE Geosci Remote Sens Lett 18:208–212

    Article 

    Google Scholar
     

  • Gogoi T, Rima C (2019) Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin. India Geosci Front 10:1113–1124

    Article 

    Google Scholar
     

  • Hampson D, Todor T, Brian R (2000) Using multi-attribute transforms to predict log properties from seismic data. Explor Geophys 31:481–487

    Article 

    Google Scholar
     

  • Hampson DP, Schuelke JS, Quirein JA (2001) Use of multi-attribute transforms to predict log properties from seismic data. Geophysics 66(1):220–236

  • Haris A, Sitorus RJ, Agus R (2017) Pore pressure prediction using probabilistic neural network: a case study of South Sumatra Basin. In: IOP Conference Series: Environ Earth Scivol. 62:012021

  • Herrera VM, Brian R, Adilce F (2006) Neural networks in reservoir characterization. Lead Edge 25:402–411

    Article 

    Google Scholar
     

  • Hou Q, Jianwei Z, Bo L (2016) Estimation of reservoir porosity using probabilistic neural network and seismic attributes. Glob Geol 19:6–12


    Google Scholar
     

  • Jeong C, Mukerji T, Mariethoz G (2017) A fast approximation for seismic inverse modeling: Adaptive spatial resampling. Math Geosci 49:845–869

  • Jordan MI, Tom MM (2015) Machine learning: trends, perspectives, and prospects. Science 6245:255–260

    Article 

    Google Scholar
     

  • Kim Y, Nakata N (2018) Geophysical inversion versus machine learning in inverse problems. Lead Edge 37(12):894–901

    Article 

    Google Scholar
     

  • Kushwaha PK, Maurya SP, Piyush R, Singh NP (2020) Porosity prediction from offshore seismic data of F3 Block, the Netherlands using multi-layer feed-forward neural network. Curr Sci 10:1652

    Article 

    Google Scholar
     

  • Kushwaha PK, Maurya SP, Piyush R, Singh NP (2021) Estimation of subsurface rock properties from seismic inversion and geo-statistical methods over F3-block, Netherland. Explor Geophys 52:258–272

    Article 

    Google Scholar
     

  • Lawton DC, Robert RS, Andreas C, Stacey H (1995) Advances in 3C–3D design for converted waves. CREWES Res Rep 7:43–51


    Google Scholar
     

  • Lawton DC, Stewart R, Cordsen A, Hrycak S (1996) Design review of the Blackfoot 3C-3D seismic program. The CREWES Project Research Report 8(38):1

  • Leite EP, Vidal (2011) 3D porosity prediction from seismic inversion and neural networks. Comput Geosci 8:1174–1180

  • Li M, Yan XS, Zhang MZ (2023) A comprehensive review of seismic inversion based on neural networks. Earth Sci Inform 1–31

  • Liu X, Qiang G, Xiaohong C, Li J, Yangkang C (2021) Extreme learning machine for multivariate reservoir characterization. J Pet Sci Eng 205:108869

    Article 

    Google Scholar
     

  • Mahmood MF, Ahmad Z (2017) Application of multi-layer feed forward neural network (MLFNN) for the. Nucleus 1:10–15


    Google Scholar
     

  • Mahmood MF, Shakir U, Abuzar MK, Khan MA, Khattak N, Hussain HS, Tahir AR (2017) Probabilistic neural network approach for porosity prediction in Balkassar area: a case study. J Himal Earth Sci 50(1):111

  • Maurya SP, Singh KH (2015) Reservoir characterization using model-based inversion and probabilistic neural network. Discovery 228:122–127


    Google Scholar
     

  • Maurya SP, Singh NP (2018) Application of LP and ML sparse spike inversion with probabilistic neural network to classify reservoir facies distribution-A case study from the Blackfoot field, Canada. J Appl Geophy 159:511–521

    Article 

    Google Scholar
     

  • Maurya SP, Sarkar P (2016) Comparison of post stack seismic inversion methods: a case study from Blackfoot field, Canada. Int J Eng Res 7(8):1091–1101

  • Maurya SP, Singh N P, Kumar H S (2020) Seismic inversion methods: a practical approach, vol 1. Springer, Cham, Switzerland

  • Misra S, Satinder C, John Z (2010) Neural network regression analysis and post-stack inversion-A comparison. SEG Technical Program Expanded Abstracts 2010, pp 1473–1477. Society of Exploration Geophysicists

  • Mukherjee B, Kalachand S (2019) Prediction of reservoir parameters in gas hydrate sediments using artificial intelligence (AI): a case study in Krishna-Godavari basin (NGHP Exp-02). J Earth Syst Sci 128:1–14

    Article 

    Google Scholar
     

  • Qiang Z, Qamar Y, Naser G, Qizhen D (2020) Prediction of reservoir quality from log-core and seismic inversion analysis with an artificial neural network: a case study from the Sawan Gas Field Pakistan. Energies 2:486

    Article 

    Google Scholar
     

  • Quiñones AE, Leimar O, Lotem A, Bshary R (2020) Reinforcement learning theory reveals the cognitive requirements for solving the cleaner fish market task. Am Nat 195(4):664–677

  • Raknes EB, Børge A, Wiktor W (2015) Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area. Geophys J Int 202:1877–1894

    Article 

    Google Scholar
     

  • Röth G, Albert T (1994) Neural networks and inversion of seismic data. J Geophys Res Solid 99:6753–6768

    Article 

    Google Scholar
     

  • Russell BH, Laurence RL, Daniel PH (2003) Application of the radial basis function neural network to the prediction of log properties from seismic attributes. Explor Geophys 34:15–23

    Article 

    Google Scholar
     

  • Russell BH (2004).The application of multivariate statistics and neural networks to the prediction of reservoir parameters using seismic attributes. PhD Thesis, Department of Geology and Geophysics, Calgary, Alberta

  • Russell BH (2019) Machine learning and geophysical inversion—A numerical study. Lead Edge 38:512–519

    Article 

    Google Scholar
     

  • Sayers C, Chopra S (2009) Introduction to this special section: Seismic modeling. Lead Edge 28(5):528–529

  • Schuster GT (2017) Seismic inversion Society of Exploration Geophysicists

  • Sen MK, Stoffa PL (1991) Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics 56(10):1624–1638

  • Sen MK (2006) Seismic inversion. Society of Petroleum Engineers, Richardson TX

  • Shuaib MEK, Berguig MC (2022) Thin-bed reservoir characterization by integration of seismic inversion, multi attributes analysis, and neural network: a case study in the Sufyan oil field of the Muglad rift basin, Sudan. Bull Geophys Oceanogr 63:455–480


    Google Scholar
     

  • Taheri M, Ali AC, Ramin N, Ali K (2021) Modeling of the shale volume in the Hendijan oil field using seismic attributes and artificial neural networks. Acta Geol Sin-Engl 95:1322–1331

    Article 

    Google Scholar
     

  • Yasin Q, Mariusz M, Ghulam MS, Hung VT (2022) Fault and fracture network characterization using seismic data: a study based on neural network models assessment. Geomech Geophys Geo-Energy Geo-Resour 8:41

  • Zhang Y, Xueyu Z, Jinghuai G (2023) Seismic inversion based on acoustic wave equations using physics-informed neural network. IEEE Trans Geosci Remote Sens 61:1–11


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *