Uncategorized

Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves



  • Luo, Y. et al. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

    Article 

    Google Scholar
     

  • Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2021).

    Article 

    Google Scholar
     

  • Zhou, Z. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020).

    Article 

    Google Scholar
     

  • Chen, W. et al. A survey on hand pose estimation with wearable. Sensors 20, 1074 (2020).

    Article 

    Google Scholar
     

  • Glauser, O. et al. Interactive hand pose estimation using a stretch-sensing soft glove. ACM Trans. Graph. 38, 41 (2019).

  • Wang, M. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020).

    Article 

    Google Scholar
     

  • Zhu, M., Sun, Z. & Lee, C. Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities. ACS Nano 16, 14097–14110 (2022).

    Article 

    Google Scholar
     

  • Hughes, J. et al. A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. 2, 2000002 (2020).

    Article 

    Google Scholar
     

  • Sun, Z., Zhu, M., Shan, X. & Lee, C. Augmented tactile-perception and haptic-feedback rings as human–machine interfaces aiming for immersive interactions. Nat. Commun. 13, 5224 (2022).

    Article 

    Google Scholar
     

  • Sundaram, S. et al. Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019).

    Article 

    Google Scholar
     

  • Lei, Q. et al. A survey of vision-based human action evaluation methods. Sensors 19, 4129 (2019).

  • Wen, F., Zhang, Z., He, T. & Lee, C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 12, 5378 (2021).

    Article 

    Google Scholar
     

  • Henderson, J. et al. Review of wearable sensor-based health monitoring glove devices for rheumatoid arthritis. Sensors 21, 1576 (2021).

  • Hughes, J. & Iida, F. Multi-functional soft strain sensors for wearable physiological monitoring. Sensors 18, 3822 (2018).

    Article 

    Google Scholar
     

  • Atiqur, M.A.R., Antar, A. & Shahid, O. Vision-based action understanding for assistive healthcare: a short review. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 1–11 (2019).

  • Yang, C. et al. Perspectives of users for a future interactive wearable system for upper extremity rehabilitation following stroke: a qualitative study. J. Neuroeng. Rehabil. 20, 1–10 (2023).

    Article 

    Google Scholar
     

  • Moin, A. et al. An EMG gesture recognition system with flexible high-density sensors and brain-inspired high-dimensional classifier. In IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (2018).

  • Karunratanakul, K. et al. Grasping field: learning implicit representations for human grasps. International Conference on 3D Vision (3DV), 333–344 (2020).

  • Smith, B. et al. Constraining dense hand surface tracking with elasticity. ACM Trans. Graph. 39, 219 (2020).

  • Xie, K. et al. Physics-based human motion estimation and synthesis from videos. In Proc. IEEE/CVF International Conference on Computer Vision 11532–11541 (IEEE, 2021).

  • Jiang, L., Xia, H. & Guo, C. A model-based system for real-time articulated hand tracking using a simple data glove and a depth camera. Sensors 19, 4680 (2019).

    Article 

    Google Scholar
     

  • Guzov, V. et al. Human POSEitioning System (HPS): 3D human pose estimation and self-localization in large scenes from body-mounted sensors. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4316–4327 (2021).

  • Ehsani, K. et al. Use the force, Luke! Learning to predict physical forces by simulating effects. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13–19 (2020).

  • Ge, L. et al. 3D hand shape and pose estimation from a single RGB image. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 10833–10842 (IEEE, 2019).

  • Wu, E. et al. Back-hand-pose: 3D hand pose estimation for a wrist-worn camera via dorsum deformation network. In UIST 2020—Proc. 33rd Annual ACM Symposium on User Interface Software and Technology 1147–1160 (ACM, 2020).

  • Kocabas, M., Athanasiou, N. & Black, M. VIBE: video inference for human body pose and shape estimation. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 5252–5262 (IEEE, 2020).

  • Hu, F. et al. FingerTrak: continuous 3D hand pose tracking by deep learning hand silhouettes captured by miniature thermal cameras on wrist. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1–24 (2020).

  • Cao, Z., Hidalgo, G., Simon, T., Wei, S. & Sheikh, Y. OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2021).

    Article 

    Google Scholar
     

  • Si, Y. et al. Flexible strain sensors for wearable hand gesture recognition: from devices to systems. Adv. Intell. Syst. 4, 2100046 (2022).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Dynamic modeling of hand-object interactions via tactile sensing. In IEEE International Conference on Intelligent Robots and Systems 2874–2881 (IEEE, 2021).

  • Wang, S. et al. Hand gesture recognition framework using a lie group based spatio-temporal recurrent network with multiple hand-worn motion sensors. Inf. Sci. 606, 722–741 (2022).

    Article 

    Google Scholar
     

  • Deng, L. et al. Sen-Glove: a lightweight wearable glove for hand assistance with soft joint sensing. In International Conference on Robotics and Automation (ICRA), 5170–5175 (IEEE, 2022).

  • Pan, J. et al. Hybrid-flexible bimodal sensing wearable glove system for complex hand gesture recognition. ACS Sens. 6, 4156–4166 (2021).

    Article 

    Google Scholar
     

  • Liu, Y., Zhang, S. & Gowda, M. NeuroPose: 3D hand pose tracking using EMG wearables. In Proc. of the Web Conference (WWW 2021), 1471–1482 (2021).

  • Denz, R. et al. A high-accuracy, low-budget sensor glove for trajectory model learning. In 2021 20th International Conference on Advanced Robotics, ICAR 2021 1109–1115 (2021).

  • Luo, Y. Discovering the Patterns of Human–Environment Interactions Using Scalable Functional Textiles (Massachusetts Institute of Technology, 2020).

  • Côté-Allard, U. et al. Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 760–771 (2019).

    Article 

    Google Scholar
     

  • Zhang, W. et al. Intelligent knee sleeves: a real-time multimodal dataset for 3d lower body motion estimation using smart textile. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023).

  • Luo, Y. et al. Intelligent carpet: inferring 3D human pose from tactile signals. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11255–11265 (IEEE, 2021).

  • Zhou, L., Shen, W., Liu, Y. & Zhang, Y. A scalable durable and seamlessly integrated knitted fabric strain sensor for human motion tracking. Adv. Mater. Technol. 7, 2200082 (2022).

    Article 

    Google Scholar
     

  • Brahmbhatt, S. et al. ContactPose: a dataset of grasps with object contact and hand pose. in Computer Vision—ECCV 2020 12358, 361–378 (Springer, 2020).

  • Lei, X., Sun, L. & Xia, Y. Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks. Struct. Health Monit. 20, 2069–2087 (2021).

  • Soltanian, S. et al. Highly piezoresistive compliant nanofibrous sensors for tactile and epidermal electronic applications. J. Mater. Res. 30, 121–129 (2015).

  • Soltanian, S. et al. Highly stretchable, sparse, metallized nanofiber webs as thin, transferrable transparent conductors. Adv. Energy Mater. 3, 1332–1337 (2013).

    Article 

    Google Scholar
     

  • Konku-Asase, Y., Yaya, A. & Kan-Dapaah, K. Curing temperature effects on the tensile properties and hardness of γ-Fe2O3 reinforced PDMS nanocomposites. Adv. Mater. Sci. Eng. 2020, 6562373 (2020).

  • Liu, Z. et al. Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nanomicro Lett. 14, 61 (2022).

  • Ho, D. et al. Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv. Funct. Mater. 29, 1900025 (2019).

    Article 

    Google Scholar
     

  • Vu, C. & Kim, J. Highly sensitive e-textile strain sensors enhanced by geometrical treatment for human monitoring. Sensors 20, 2383 (2020).

    Article 

    Google Scholar
     

  • Tang, Z. et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10, 6624–6635 (2018).

    Article 

    Google Scholar
     

  • Gao, Y. et al. 3D-printed coaxial fibers for integrated wearable sensor skin. Adv. Mater. Technol. 4, 1900504 (2019).

    Article 

    Google Scholar
     

  • Cai, G. et al. Highly stretchable sheath-core yarns for multifunctional wearable electronics. ACS Appl. Mater. Interfaces 12, 29717–29727 (2020).


    Google Scholar
     

  • Xu, L. et al. Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS Appl. Mater. Interfaces 12, 13265–13274 (2020).

    Article 

    Google Scholar
     

  • Tashakori, A. arvintashakori/SmartTextileGlove: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.10128938 (2023).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *