I have run into an issue in an optimization problem where trivially feasible constraints cause my cpp program to return “infeasible” when trying to solve.
To demonstrate, I have created a nurse schedule optimization program with 3 nurses and 5 slots.
I have two trivial constraints: 1) that the first nurse takes the first slot and 2) that at most one nurse is allowed in each slot.
When engaged one at a time, these constraints cause or-tools to return a feasible solution, but when I engage both constraints, I get an infeasible solution. The exact same problem works fine in the python API even with both constraints engaged.
I suspect I am misusing AddEquality
somehow when I set the first constraint (cp_model.AddEquality(LinearExpr(slots[0][0]), 1);
), but I cannot figure out what the problem is.
Please help.
#include <iostream>
#include <vector>
#include "ortools/sat/cp_model.h"
#include "ortools/sat/sat_parameters.pb.h"
namespace operations_research {
namespace sat {
void slots(bool add_sum, bool add_const) {
CpModelBuilder cp_model;
const int num_nurses = 3;
const int num_slots = 5;
std::vector<std::vector<IntVar>> slots(num_nurses);
for (int n = 0; n < num_nurses; n++) {
for (int d = 0; d < num_slots; d++) {
const IntVar var = cp_model.NewIntVar({0, 1});
slots[n].push_back(var);
}
}
if (add_const) {
// trival constraint
cp_model.AddEquality(LinearExpr(slots[0][0]), 1);
}
if (add_sum) {
// make the first row sum to one; should be trivial too
std::vector<IntVar> this_nurse_vals(num_nurses);
for (int n = 0; n < num_nurses; n++) {
const IntVar var = slots[n][0];
this_nurse_vals.push_back(var);
}
cp_model.AddEquality(LinearExpr::Sum(this_nurse_vals), 1);
}
// solve
const CpSolverResponse response = Solve(cp_model.Build());
LOG(INFO) << CpSolverResponseStats(response);
for (int d = 0; d < num_slots; d++) {
for (int n = 0; n < num_nurses; n++) {
std::cout << SolutionIntegerValue(response, slots[n][d]);
}
std::cout << std::endl;
}
std::cout << std::endl;
// [END solve]
}
} // namespace sat
} // namespace operations_research
// ----- MAIN -----
int main(int argc, char **argv) {
operations_research::sat::slots(false, true); // works
operations_research::sat::slots(true, false); // works
operations_research::sat::slots(true, true); // infeasible
return EXIT_SUCCESS;
}
// [END program]
The same program that works fine in python:
from ortools.sat.python import cp_model
num_nurses = 3
num_slots = 5
model = cp_model.CpModel()
# make vars
slots = {}
for n in range(num_nurses):
for d in range(num_slots):
slots[(n, d)] = model.NewIntVar(0, 1, "slot")
model.Add(slots[(0, 0)] == 1)
model.Add(sum(slots[(n, 0)] for n in range(num_nurses)) == 1)
solver = cp_model.CpSolver()
solver.Solve(model)
solution = []
for d in range(num_slots):
solution.append([])
for n in range(num_nurses):
solution[d].append(solver.Value(slots[(n, d)]))
print(solution)