Bostrom, N.: Superintelligence: Paths, Dangers. Oxford University Press, Strategies (2014)
IDC.: Worldwide Artificial Intelligence Spending Guide. International Data Corporation (2020)
Goertzel, B.: Artificial general intelligence: concept, state of the art, and future prospects. J. Artif. Intell. Res. 49, 1–48 (2014)
Sutskever, I.: The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence. https://doi.org/10.48550/arXiv.2002.06177 (2020)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2016)
Vaswani, A., et al.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 (2017)
Brown, T.B., et al.: Language Models are Few-Shot Learners. https://doi.org/10.48550/arXiv.2005.14165 (2020)
Jones, N.: How to stop data centers from gobbling up the world’s electricity. Nature 561, 163–166 (2018)
Andrae, A.S.: Global ICT energy use and greenhouse gas emissions 2010–2030. Environ. Sci. Technol. 54(22), 14025–14033 (2020)
Belkhir, L., Elmeligi, A.: Assessing ICT global emissions footprint: trends to 2040 & recommendations. J. Clean. Prod. 177, 448–463 (2018)
OpenAI.: AI and Compute. OpenAI Blog (2019)
Sustainable, A.G.I.: Environmental impact of Artificial General Intelligence. J. Sustain. Res. 2(4), 255–267 (2019)
Greenpeace.: Clicking Clean: Who is Winning the Race to Build A Green Internet. Greenpeace Inc. (2017)
United Nations.: Transforming our World: The 2030 Agenda for Sustainable Development. United Nations (2015)
McCarthy, J., Minsky, M., Rochester, N., Shannon, C.E.: A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence (1955)
Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Commun. ACM 19(3), 113–126 (1976)
Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)
Minsky, M.: Steps toward artificial intelligence. Proc. IRE 49(1), 8–30 (1961)
Mitchell, T.M.: Machine Learning. McGraw Hill (1997)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Legg, S., Hutter, M.: A Collection of definitions of intelligence. In: Advances in Artificial General Intelligence, pp. 17–24 (2007)
Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE Intell. Syst. 24(2), 8–12 (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, pp. 4171–4186 (2019)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015)
Archer, C.L., Jacobson, M.Z.: Evaluation of global wind power. J. Geophys. Res. 110(D12) (2005)
Paish, O.: Small hydro power: technology and current status. Renew. Sustain. Energy Rev. 6(6), 537–556 (2002)
Zhou, Y., Zhang, C., Xia, L., Zhang, Z.: Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Appl. Energy 155, 606–619 (2015)
Jacobson, M.Z., Delucchi, M.A., Cameron, M.A., Mathiesen, B.V.: Matching demand with supply at low cost in 139 countries among 20 World Regions With 100% Wind, Water, and Solar Power (WWSP). Renew. Energy 123, 236–248 (2017)
Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M., Miller Jr., H.L., Chen, Z.: IPCC, 2007: climate change 2007: the physical science basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2009)
Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011)
Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)
Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Arch. 8(3), 1–154 (2013)
Orgerie, A.C., de Assuncao, M.D., Lefeuvre, J.: A survey on techniques for improving the energy efficiency of large-scale distributed systems. ACM Comput. Surv. (CSUR) 46(4), 1–31 (2014)
Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud, and Grid Computing, pp. 826–831 (2010)
Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Commun. Surv. & Tutor. 13(2), 223–244 (2011)
Schwartz, R., Dodge, J., Smith, N., Etzioni, O.: Green AI. https://doi.org/10.48550/arXiv.1907.10597 (2019)
Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1(9), 389–399 (2019)
Floridi, L.: Soft ethics and the governance of the digital. Philos. & Technol. 31(1), 1–8 (2018)
Veitas, V., Weinbaum, D.: Open-ended intelligence: the individuation of intelligent agents. J. Exp. Theor. Artif. Intell. 29(2), 371–396 (2017)
Dignum, V., Dignum, F., Davidsson, P.: Sustainability and artificial intelligence: from intra-generational to inter-generational optimization. Artif. Intell. 274, 1–18 (2019)
Koomey, J., Berard, S.: Implications of historical trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput. 37(3), 46–54 (2014)
Naess, A.: The shallow and the deep, long-range ecology movement. Inquiry 16(1–4), 95–100 (1973)
Leopold, A.: A Sand County Almanac. Oxford University Press (1949)
Bookchin, M.: The Ecology of Freedom: The Emergence and Dissolution of Hierarchy. Cheshire Books (1982)
Capra, F.: The Web of Life: A New Scientific Understanding of Living Systems. Anchor Books (1996)
Petrovskii, S., Petrovskaya, N.: Computational ecology as an emerging science. Interface Focus 2(2), 241–254 (2012)
Levin, S.A.: Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1(5), 431–436 (1998)
Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., Suh, S.: Recent developments in life cycle assessment. J. Environ. Manage. 91(1), 1–21 (2009)
Reap, J., Roman, F., Duncan, S., Bras, B.: A survey of unresolved problems in life cycle assessment. Int. J. Life Cycle Assess. 13(4), 290–300 (2008)
Guha, R.: Environmentalism: A Global History. Longman (2000)
Shiva, V.: Earth Democracy: Justice, Sustainability, and Peace. South End Press (2008)
Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet, E., Horner, N., Azevedo, I., Lintner, W.: United States Data Center Energy Usage Report. Lawrence Berkeley National Laboratory (2016)
Koomey, J.: Worldwide electricity used in data centers. Environ. Res. Lett. 3(3), 034008 (2008)
Nisbet, M.C.: Public opinion about stem cell research and human cloning. Public Opin. Q. 68(1), 131–154 (2004)
Bimber, B.: Three Faces of Technological Determinism. In Does Technology Drive History? The Dilemma of Technological Determinism, pp. 79–100. MIT Press (1994)
Pinker, S.: Enlightenment Now: The Case for Reason, Science, Humanism, and Progress. Viking (2018)
Walsh, T.: Machines That Think: The Future of Artificial Intelligence. Prometheus (2018)
Mokiy, V.: The digital age, artificial intelligence, and unemployment. Technol. Forecast. Soc. Chang. 151, 119777 (2020)
Schwab, K.: The Fourth Industrial Revolution. Crown Business (2016)
Winner, L.: Autonomous Technology: Technics-out-of-Control as a Theme in Political Thought. MIT Press (1977)
Sclove, R.E.: Democracy and Technology. Guilford Press (1995)
Juma, C.: Innovation and Its Enemies: Why People Resist New Technologies. Oxford University Press (2016)
van den Hoven, J.: Value sensitive design and responsible innovation. In: Responsible Innovation, pp. 75–83. Springer (2013)
Friedman, B., Hendry, D.G.: Value Sensitive Design: Shaping Technology with Moral Imagination. MIT Press (2019)
Boddington, P.: Towards a Code of Ethics for Artificial Intelligence. Springer (2017)
Hagendorff, T.: The ethics of AI ethics: an evaluation of guidelines. Mind. Mach. 30(1), 99–120 (2020)
Shelby, A., Darnall, N.: Why industrial symbiosis research should address social and environmental justice. J. Ind. Ecol. 18(2), 155–166 (1994)
Schlosberg, D.: Defining Environmental Justice: Theories, Movements, and Nature. Oxford University Press (2007)
Agyeman, J., Bullard, R.D., Evans, B.: Just Sustainabilities: Development in an Unequal World. MIT Press (2003)
Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage Publications (2014)
Hart, C.: Doing a Literature Review: Releasing the Social Science Research Imagination. Sage Publications (1998)
Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications (2018)
Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006)
Siano, P., Piccolo, A., Sarno, D., Pietrosanto, A.: Real-time monitoring of distribution networks using machine learning techniques. Electr. Power Syst. Res. 127, 1–8 (2020)
Chicco, G.: Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42(1), 68–80 (2012)
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2019)
Fraser, H., Coiera, E., Wong, D.: Safety of patient-facing digital symptom checkers. Lancet 392(10161), 2263–2270 (2020)
Fagnant, D.J., Kockelman, K.M.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 77, 167–181 (2015)
Greenblatt, J.B., Saxena, S.: Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles. Nat. Clim. Chang. 5(9), 860–863 (2015)
Alam, A., Gattami, A., Johansson, K.H.: An experimental study on the fuel reduction potential of heavy duty vehicle platooning. In: 13th International IEEE Conference on Intelligent Transportation Systems (2015)
Edenhofer, O., et al.: IPCC, 2014: climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014)
Victor, D.G.: Global Warming Gridlock: Creating More Effective Strategies for Protecting the Planet. Cambridge University Press (2015)
Mittelstadt, B., Allo, P., Taddeo, M., Wachter, S., Floridi, L.: The ethics of algorithms: mapping the debate. Big Data Soc. 3(2), 205395171667967 (2016)
Steffen, W., et al.: Planetary boundaries: guiding human development on a changing planet. Science 347(6223), 1259855 (2015)
Porter, M.E., van der Linde, C.: Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 9(4), 97–118 (1995)
Kuzma, J., Kuzhabekova, A.: Corporate social responsibility for nanotechnology oversight. Med. Health Care Philos. 14, 407–419 (2011)
Sarewitz, D.: How science makes environmental controversies worse. Environ. Sci. Policy 7(5), 385–403 (2004)