Uncategorized

Boosting-based ensemble machine learning models for predicting unconfined compressive strength of geopolymer stabilized clayey soil



  • Zou, S. et al. Research on improving comprehensive properties of a new sawdust composite insulation material by torrefaction. Process Saf. Environ. Prot. 152, 361–374 (2021).

    Article 

    Google Scholar
     

  • Shaikh, F. U. A., Fairchild, A. & Zammar, R. Comparative strain and deflection hardening behaviour of polyethylene fibre reinforced ambient air and heat cured geopolymer composites. Constr. Build. Mater. 163, 890–900 (2018).

    Article 

    Google Scholar
     

  • Ren, B. et al. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere 267, 128900 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fakhrabadi, A. et al. Evaluating the durability, microstructure and mechanical properties of a clayey-sandy soil stabilized with copper slag-based geopolymer against wetting-drying cycles. Bull. Eng. Geol. Environ. 80, 5031–5051 (2021).

    Article 

    Google Scholar
     

  • Al-Dossary, A. A. et al. Performance enhancement of road base material using calcium carbide residue and sulfonic acid dilution as a geopolymer stabilizer. Constr. Build. Mater. 364, 129959 (2023).

    Article 

    Google Scholar
     

  • Salas, D. A. et al. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 190, 170–177 (2018).

    Article 

    Google Scholar
     

  • Ghadir, P. et al. Shear strength and life cycle assessment of volcanic ash-based geopolymer and cement stabilized soil: A comparative study. Transport. Geotech. 31, 100639 (2021).

    Article 

    Google Scholar
     

  • Soleimani, S. et al. New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement 113, 99–107 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zeini, H. A. et al. Random forest algorithm for the strength prediction of geopolymer stabilized clayey soil. Sustainability 15(2), 1408 (2023).

    Article 

    Google Scholar
     

  • Khademi, F. & Budiman, J. Expansive soil: causes and treatments. i-Manage. J. Civ. Eng. 6(3), 1 (2016).


    Google Scholar
     

  • Abdila, S. R. et al. Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A review. Materials 15(1), 375 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, Z. et al. Study on triaxial creep test and constitutive model of compacted red clay. Int. J. Civ. Eng. 19, 517–531 (2021).

    Article 

    Google Scholar
     

  • Emarah, D. A. & Seleem, S. A. Swelling soils treatment using lime and sea water for roads construction. Alex. Eng. J. 57(4), 2357–2365 (2018).

    Article 

    Google Scholar
     

  • Di Sante, M. et al. Lime treatment of a soft sensitive clay: A sustainable reuse option. Geosciences 10(5), 182 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Salimi, M. & Ghorbani, A. Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Appl. Clay Sci. 184, 105390 (2020).

    Article 

    Google Scholar
     

  • Phummiphan, I. et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J. Hazard. Mater. 341, 257–267 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martins, A. C. P. et al. Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Construct. Build. Mater. 291, 123265 (2021).

    Article 

    Google Scholar
     

  • Sharma, A. K. & Sivapullaiah, P. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 56(2), 205–212 (2016).

    Article 

    Google Scholar
     

  • Alam, S., Das, S. K. & Rao, B. H. Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Construct. Build. Mater. 211, 932–942 (2019).

    Article 

    Google Scholar
     

  • Jangid, A. K. et al. Stabilization of black cotton soil by 15% Kota stone slurry with wooden saw dust. Int. J. Adv. Res. Sci. Eng. 7(2), 108–114 (2018).


    Google Scholar
     

  • Saini, H. et al. Stabilization of black cotton soil by using sugarcane bagasse ash. Int. J. Sci. Res. Rev. 7(01), 128–132 (2019).


    Google Scholar
     

  • Jangid, A. et al. Stabilization of black cotton soil by 15% Kota stone slurry with Recron 3s fibre. Int. J. Adv. Res. Sci. and Eng. 7(2), 102–107 (2018).


    Google Scholar
     

  • Abdullah, H. H. & Shahin, M. A. Strength characteristics of clay stabilized with fly-ash based geopolymer incorporating granulated slag. In Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering; 2019.

  • Rios, S. et al. Colombian soil stabilized with geopolymers for low cost roads. Proced. Eng. 143, 1392–1400 (2016).

    Article 

    Google Scholar
     

  • Ahmad, M. et al. Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential. Front. Struct. Civ. Eng. 15, 490–505 (2021).

    Article 

    Google Scholar
     

  • Ahmad, M. et al. Prediction of liquefaction-induced lateral displacements using Gaussian process regression. Appl. Sci. 12(4), 1977 (2022).

    Article 

    Google Scholar
     

  • Ahmad, F. et al. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation. Math. Biosci. Eng. 19(5), 4526–4546 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, F. et al. Improved prediction of slope stability under static and dynamic conditions using tree-based models. Parameters 1, 3 (2023).


    Google Scholar
     

  • Ahmad, F. et al. Stability risk assessment of slopes using logistic model tree based on updated case histories. Math. Biosci. Eng. 20(12), 21229–21245 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, M. et al. Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques. Multisc. Multidiscip. Model. Exp. Des. 20, 1–15 (2023).


    Google Scholar
     

  • Cao, J., et al., A novel systematic and evolved approach based on XGBoost-firefly algorithm to predict Young’s modulus and unconfined compressive strength of rock. 2021, 1–17.

  • Onyelowe, K.C., Ebid, A. M. & Hanandeh, S. J. A. J. o. C. E. Advanced machine learning prediction of the unconfined compressive strength of geopolymer cement reconstituted granular sand for road and liner construction applications. 2023; 1–15.

  • Onyelowe, K. C. et al. Selected AI optimization techniques and applications in geotechnical engineering. Cogent Eng. 10(1), 2153419 (2023).

    Article 

    Google Scholar
     

  • Onyelowe, K. C. et al. Different AI predictive models for pavement subgrade stiffness and resilient deformation of geopolymer cement-treated lateritic soil with ordinary cement addition. Int. J. Pavement Res. Technol. 20, 1–22 (2022).


    Google Scholar
     

  • Huat, C. Y. et al. Factors influencing pile friction bearing capacity: Proposing a novel procedure based on gradient boosted tree technique. Sustainability 13(21), 11862 (2021).

    Article 

    Google Scholar
     

  • Zeng, J. et al. Prediction of peak particle velocity caused by blasting through the combinations of boosted-CHAID and SVM models with various kernels. Appl. Sci. 11(8), 3705 (2021).

    Article 

    Google Scholar
     

  • Wang, J. et al. A novel combination of PCA and machine learning techniques to select the most important factors for predicting tunnel construction performance. Buildings 12(7), 919 (2022).

    Article 

    Google Scholar
     

  • Koopialipoor, M. et al. Introducing stacking machine learning approaches for the prediction of rock deformation. Transport. Geotech. 34, 100756 (2022).

    Article 

    Google Scholar
     

  • Khatti, J. et al. Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, Gaussian process regression, and gene expression programming. Multisc. Multidiscipl. Model. Exp. Des. 20, 1–24 (2023).


    Google Scholar
     

  • Khatti, J. et al. Prediction of UCS of fine-grained soil based on machine learning part 2: comparison between hybrid relevance vector machine and Gaussian process regression. Multisc. Multidiscipl. Model. Exp. Des. 20, 1–41 (2023).


    Google Scholar
     

  • Salehi, M. et al. Prediction of unconfined compressive strength and California bearing capacity of cement-or lime-pozzolan-stabilised soil admixed with crushed stone waste. Geomech. Geoeng. 18(4), 272–283 (2023).

    Article 

    Google Scholar
     

  • Aurélien, G. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (O’Reilly Publishing, 2019).


    Google Scholar
     

  • Mozumder, R. A. & Laskar, A. I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Comput. Geotech. 69, 291–300 (2015).

    Article 

    Google Scholar
     

  • Mozumder, R. A., Laskar, A. I. & Hussain, M. Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Construct. Build. Mater. 132, 412–424 (2017).

    Article 

    Google Scholar
     

  • Javdanian, H. & Lee, S. Evaluating unconfined compressive strength of cohesive soils stabilized with geopolymer: a computational intelligence approach. Eng. Comput. 35, 191–199 (2019).

    Article 

    Google Scholar
     

  • Nagaraju, T. V. & Prasad, C. D. New prediction models for compressive strength of GGBS-based geopolymer clays using swarm assisted optimization. In Advances in Computer Methods and Geomechanics: IACMAG Symposium 2019, Vol. 1 (Springer, 2020).

  • Ngo, T. Q., Nguyen, L. Q. & Tran, V. Q. Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. Int. J. Pavement Eng. 20, 1–18 (2022).


    Google Scholar
     

  • IS. Methods of Test for Soils, Laboratory Determination of Permeability (Bureau of Indian Standards, 1986).


    Google Scholar
     

  • Hosseini, S. et al. Assessment of the ground vibration during blasting in mining projects using different computational approaches. Geomech. Geoeng. 13(1), 18582 (2023).


    Google Scholar
     

  • Islam, S. & Amin, S. H. Prediction of probable backorder scenarios in the supply chain using Distributed Random Forest and Gradient Boosting Machine learning techniques. J. Big Data 7, 1–22 (2020).

    Article 

    Google Scholar
     

  • Ngo, A. Q., Nguyen, L. Q. & Tran, V. Q. Developing interpretable machine learning-Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer. PLoS One 18(6), e0286950 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 20, 1189–1232 (2001).

    MathSciNet 

    Google Scholar
     

  • Hastie, T. et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol 2 (Springer, 2009).

    Book 

    Google Scholar
     

  • Schapire, R. E. Explaining Adaboost, in Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik 37–52 (Springer, 2013).

    Book 

    Google Scholar
     

  • Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schapire, R. E. The strength of weak learnability. Mach. Learn. 5, 197–227 (1990).

    Article 

    Google Scholar
     

  • Koduri, S. B., et al. Prediction of crop production using adaboost regression method. In Journal of Physics: Conference Series (IOP Publishing, 2019).

  • Wu, Y. & Zhou, Y. Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Construct. Build. Mater. 330, 127298 (2022).

    Article 

    Google Scholar
     

  • Ahmad, M., Tang, X. & Ahmad, F. Evaluation of Liquefaction-Induced Settlement Using Random Forest and REP Tree Models: Taking Pohang Earthquake as a Case of Illustration. In Natural Hazards-Impacts, Adjustments and Resilience (IntechOpen, 2020).


    Google Scholar
     

  • Ahmad, M. et al. Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Materials 14(8), 1983 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, M. et al. Novel approach to predicting soil permeability coefficient using Gaussian process regression. Sustainability 14(14), 8781 (2022).

    Article 

    Google Scholar
     

  • Demšar, J. et al. Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14(1), 2349–2353 (2013).


    Google Scholar
     

  • Wang, C., Xu, S. & Yang, J. J. S. Adaboost algorithm in artificial intelligence for optimizing the IRI prediction accuracy of asphalt concrete pavement. Sensors 21(17), 5682 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosseini, S., Poormirzaee, R. & Hajihassani, M. An uncertainty hybrid model for risk assessment and prediction of blast-induced rock mass fragmentation. Int. J. Rock Mech. Min. Sci. 160, 105250 (2022).

    Article 

    Google Scholar
     

  • Khatti, J. & Grover, K. S. J. T. I. G. Estimation of intact rock uniaxial compressive strength using advanced machine learning. Transport. Infrastruct. Geotechnol. 20, 1–34 (2023).


    Google Scholar
     

  • Khatti, J. & Grover, K. S. J. A. O. C. M. I. E. A scientometrics review of soil properties prediction using soft computing approaches. Arch. Comput. Methods Eng. 20, 1–35 (2023).


    Google Scholar
     

  • Amjad, M. et al. Prediction of pile bearing capacity using XGBoost algorithm: modeling and performance evaluation. Appl. Sci. 12(4), 2126 (2022).

    Article 

    Google Scholar
     

  • Khatti, J. et al. Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid lstm and rvm approaches: An extended investigation of multicollinearity. Comput. Geotech. 165, 105912 (2024).

    Article 

    Google Scholar
     

  • Zhao, J. et al. Super learner ensemble model: A novel approach for predicting monthly copper price in future. Resour. Policy 85, 103903 (2023).

    Article 

    Google Scholar
     

  • Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *