Lankisch, P. G., Apte, M., & Banks, P. A. (2015). Acute pancreatitis. Lancet (London, England), 386(9988), 85–96.
Song, Y., Zhang, Z., Yu, Z., Xia, G., Wang, Y., Wang, L., et al. (2021). Wip1 aggravates the cerulein-induced cell autophagy and inflammatory injury by targeting STING/TBK1/IRF3 in acute pancreatitis. Inflammation, 44(3), 1175–1183.
Wang, G. J., Gao, C. F., Wei, D., Wang, C., & Ding, S. Q. (2009). Acute pancreatitis: Etiology and common pathogenesis. World Journal of Gastroenterology, 15(12), 1427–1430.
Valdés Lacasa, T., Duarte Borges, M. A., García Marín, A., & Gómez, C. C. (2017). Acute pancreatitis caused by Mycoplasma pneumoniae: An unusual etiology. Clinical Journal of Gastroenterology., 10(3), 279–282.
Gliem, N., Ammer-Herrmenau, C., Ellenrieder, V., & Neesse, A. (2021). Management of severe acute pancreatitis: An update. Digestion, 102(4), 503–507.
Szatmary, P., Grammatikopoulos, T., Cai, W., Huang, W., Mukherjee, R., Halloran, C., et al. (2022). Acute pancreatitis: Diagnosis and treatment. Drugs, 82(12), 1251–1276.
Kandasamy, C., Shah, I., Yakah, W., Ahmed, A., Tintara, S., Sorrento, C., et al. (2022). The impact of an inpatient pancreatitis service and educational intervention program on the outcome of acute pancreatitis. The American Journal of Medicine, 135(3), 350–9.e2.
Baldursdottir, M. B., Andresson, J. A., Jonsdottir, S., Benediktsson, H., Kalaitzakis, E., & Bjornsson, E. S. (2023). Ischemic pancreatitis is an important cause of acute pancreatitis in the intensive care unit. Journal of Clinical Gastroenterology, 57(1), 97–102.
Lodewijkx, P. J., Besselink, M. G., Witteman, B. J., Schepers, N. J., Gooszen, H. G., van Santvoort, H. C., et al. (2016). Nutrition in acute pancreatitis: A critical review. Expert Review of Gastroenterology & Hepatology, 10(5), 571–580.
Zwicker, A., Denovan-Wright, E. M., & Uher, R. (2018). Gene-environment interplay in the etiology of psychosis. Psychological Medicine, 48(12), 1925–1936.
Song, Z. Y., Chao, F., Zhuo, Z., Ma, Z., Li, W., & Chen, G. (2019). Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis. Aging, 11(13), 4736–4756.
Dai, Y., Sun, X., Wang, C., Li, F., Zhang, S., Zhang, H., et al. (2021). Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization. BMC Genomics, 22(1), 236.
Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Zhang, F., Petersen, M., Johnson, L., Hall, J., & O’Bryant, S. E. (2021). Recursive support vector machine biomarker selection for Alzheimer’s disease. Journal of Alzheimer’s Disease, 79(4), 1691–1700.
Sanz, H., Valim, C., Vegas, E., Oller, J. M., & Reverter, F. (2018). SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics, 19(1), 432.
Kang, J., Choi, Y. J., Kim, I. K., Lee, H. S., Kim, H., Baik, S. H., et al. (2021). LASSO-based machine learning algorithm for prediction of lymph node metastasis in T1 colorectal cancer. Cancer Research and Treatment, 53(3), 773–783.
Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4(10), 1544–6115.
Zhu, Y., Yang, X., & Zu, Y. (2022). Integrated analysis of WGCNA and machine learning identified diagnostic biomarkers in dilated cardiomyopathy with heart failure. Frontiers in Cell and Developmental Biology, 10, 1089915.
Zhou, Y., Shi, W., Zhao, D., Xiao, S., Wang, K., & Wang, J. (2022). Identification of immune-associated genes in diagnosing aortic valve calcification with metabolic syndrome by integrated bioinformatics analysis and machine learning. Frontiers in Immunology, 13, 937886.
Nesvaderani, M., Dhillon, B. K., Chew, T., Tang, B., Baghela, A., Hancock, R. E., et al. (2022). Gene expression profiling: Identification of novel pathways and potential biomarkers in severe acute pancreatitis. Journal of the American College of Surgeons, 234(5), 803–815.
Carpenter, C. M., Frank, D. N., Williamson, K., Arbet, J., Wagner, B. D., Kechris, K., et al. (2021). tidyMicro: A pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC Bioinformatics, 22(1), 021–03967.
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research., 43(7), e47.
Song, Y., Feng, T., Cao, W., Yu, H., & Zhang, Z. (2022). Identification of key genes in nasopharyngeal carcinoma based on bioinformatics analysis. Computational Intelligence and Neuroscience, 2022, 9022700.
Ito, K., & Murphy, D. (2013). Application of ggplot2 to pharmacometric graphics. CPT: Pharmacometrics & Systems Pharmacology, 2(10), e79.
Langfelder, P., Zhang, B., & Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: The dynamic tree cut package for R. Bioinformatics, 24(5), 719–720.
Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 4(Suppl 4), 1752–2509.
Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., et al. (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research. https://doi.org/10.1093/nar/gkq537
Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology, 16(5), 284–287.
McEligot, A. J., Poynor, V., Sharma, R., & Panangadan, A. (2020). Logistic LASSO regression for dietary intakes and breast cancer. Nutrients. https://doi.org/10.3390/nu12092652
Yang, L., Qu, Q., Hao, Z., Sha, K., Li, Z., & Li, S. (2022). Powerful identification of large quantitative trait loci using genome-wide R/glmnet-based regression. The Journal of heredity., 113(4), 472–478.
Xu, N., Guo, H., Li, X., Zhao, Q., & Li, J. (2021). A five-genes based diagnostic signature for sepsis-induced ARDS. Pathology Oncology Research, 27, 580801.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences USA, 102(43), 15545–15550.
Fehringer, G., Liu, G., Briollais, L., Brennan, P., Amos, C. I., Spitz, M. R., et al. (2012). Comparison of pathway analysis approaches using lung cancer GWAS data sets. PLoS ONE, 7(2), 21.
Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34(3), 267–273.
G. Yu. (2023). Enrichplot: Visualization of Functional Enrichment Result. R package version 1220.
Heng, L., Jia, Z., Bai, J., Zhang, K., Zhu, Y., Ma, J., et al. (2017). Molecular characterization of metastatic osteosarcoma: Differentially expressed genes, transcription factors and microRNAs. Molecular Medicine Reports, 15(5), 2829–2836.
McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., Kelley, G. M., et al. (2019). The biochemical basis of microRNA targeting efficacy. Science, 366(6472), 5.
Chen, Y., & Wang, X. (2020). miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Research, 48(D1), D127–D131.
Team RC. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Beger, H. G., & Rau, B. M. (2007). Severe acute pancreatitis: Clinical course and management. World journal of gastroenterology., 13(38), 5043–5051.
Date, K., Satoh, A., Iida, K., & Ogawa, H. (2015). Pancreatic α-amylase controls glucose assimilation by duodenal retrieval through N-glycan-specific binding, endocytosis, and degradation. Journal of Biological Chemistry, 290(28), 17439–17450.
Yang, R. W., Shao, Z. X., Chen, Y. Y., Yin, Z., & Wang, W. J. (2005). Lipase and pancreatic amylase activities in diagnosis of acute pancreatitis in patients with hyperamylasemia. Hepatobiliary & pancreatic diseases international: HBPD INT, 4(4), 600–603.
Bettac, L., Denk, S., Seufferlein, T., & Huber-Lang, M. (2017). Complement in pancreatic disease-perpetrator or savior? Frontiers in Immunology, 8, 15.
Hartwig, W., Klafs, M., Kirschfink, M., Hackert, T., Schneider, L., Gebhard, M. M., et al. (2006). Interaction of complement and leukocytes in severe acute pancreatitis: Potential for therapeutic intervention. American Journal of Physiology Gastrointestinal and Liver Physiology, 291(5), G844–G850.
Zhang, X., Li, Z., Liu, W., Du, J., Liu, Y., Yu, N., et al. (2022). The complement and coagulation cascades pathway is associated with acute necrotizing pancreatitis by genomics and proteomics analysis. Journal of Inflammation Research, 15, 2349–2363.
Yang, X., Yao, L., Yuan, M., Zhang, X., Jakubowska, M. A., Ferdek, P. E., et al. (2022). Transcriptomics and network pharmacology reveal the protective effect of Chaiqin Chengqi decoction on obesity-related alcohol-induced acute pancreatitis via oxidative stress and PI3K/Akt signaling pathway. Frontiers in Pharmacology., 13, 896523.
Zhang, D., Li, L., Li, J., Wei, Y., Tang, J., Man, X., et al. (2022). Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats. Biomedicine & Pharmacotherapy, 153, 113461.
Wu, B. U., & Banks, P. A. (2013). Clinical management of patients with acute pancreatitis. Gastroenterology, 144(6), 1272–1281.
Morgenstern, R., Zhang, J., & Johansson, K. (2011). Microsomal glutathione transferase 1: Mechanism and functional roles. Drug Metabolism Reviews, 43(2), 300–306.
Kuang, F., Liu, J., Xie, Y., Tang, D., & Kang, R. (2021). MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chemical Biology, 28(6), 765–75.e5.
Dodson, M., Anandhan, A., & Zhang, D. D. (2021). MGST1, a new soldier of NRF2 in the battle against ferroptotic death. Cell chemical biology., 28(6), 741–742.
Kehlen, A., Haegele, M., Böhme, L., Cynis, H., Hoffmann, T., & Demuth, H. U. (2017). N-terminal pyroglutamate formation in CX3CL1 is essential for its full biologic activity. Bioscience Reports. https://doi.org/10.1042/BSR20170712
Zhao, T., Zhou, Y., Wang, Q., Yi, X., Ge, S., He, H., et al. (2021). QPCT regulation by CTCF leads to sunitinib resistance in renal cell carcinoma by promoting angiogenesis. International Journal of Oncology. https://doi.org/10.3892/ijo.2021.5228
Liang, T., Wu, X., Wang, L., Ni, Z., Fan, Y., Wu, P., et al. (2023). Clinical significance and diagnostic value of QPCT, SCEL and TNFRSF12A in papillary thyroid cancer. Pathology, research and practice., 245, 154431.
Peng, C., Li, Z., & Yu, X. (2021). The role of pancreatic infiltrating innate immune cells in acute pancreatitis. International journal of medical sciences., 18(2), 534–545.
Karabuga, B., Gemcioglu, E., Konca Karabuga, E., Baser, S., & Ersoy, O. (2022). Comparison of the predictive values of CRP, CRP/albumin, RDW, neutrophil/lymphocyte, and platelet/lymphocyte levels in determining the severity of acute pancreatitis in patients with acute pancreatitis according to the BISAP score. Bratislavske Lekarske Listy, 123(2), 129–135.
Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature reviews Immunology., 13(3), 159–175.
Manohar, M., Jones, E. K., Rubin, S. J. S., Subrahmanyam, P. B., Swaminathan, G., Mikhail, D., et al. (2021). Novel circulating and tissue monocytes as well as macrophages in pancreatitis and recovery. Gastroenterology, 161(6), 2014–29.e14.
Hu, F., Lou, N., Jiao, J., Guo, F., Xiang, H., & Shang, D. (2020). Macrophages in pancreatitis: Mechanisms and therapeutic potential. Biomedicine & Pharmacotherapy, 131, 110693.
Glaubitz, J., Wilden, A., Frost, F., Ameling, S., Homuth, G., Mazloum, H., et al. (2023). Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis. Gut, 72(7), 1355–1369.