Uncategorized

Autoencoders and their applications in machine learning: a survey



  • Abdi H, Williams LJ (2010) Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2(4):433–459

    Article 

    Google Scholar
     

  • Aggarwal CC, Zhai C (2012) A survey of text clustering algorithms. Mining Text Data, 77–128

  • Akcay S, Atapour-Abarghouei A, Breckon TP (2018) Ganomaly: Semi-supervised anomaly detection via adversarial training. In: Computer Vision-ACCV 2018: 14th Asian conference on computer vision, Perth, Australia, December 2-6, 2018, Revised Selected Papers, Part III 14, Springer, pp 622–637

  • Alex SB, Mary L (2023) Variational autoencoder for prosody-based speaker recognition. ETRI J 45(4):678–689

    Article 

    Google Scholar
     

  • Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K (2018) Deep learning approach combining sparse autoencoder with SVM for network intrusion detection. IEEE Access 6:52843–52856

    Article 

    Google Scholar
     

  • Alsadhan N (2023) A multi-module machine learning approach to detect tax fraud. Comput Syst Sci Eng 46(1):241–253

    Article 

    Google Scholar
     

  • Alzu’bi A, Albalas F, Al-Hadhrami T, Younis LB, Bashayreh A (2021) Masked face recognition using deep learning: a review. Electronics 10(21):2666

    Article 

    Google Scholar
     

  • An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture IE 2(1):1–18


    Google Scholar
     

  • An P, Wang Z, Zhang C (2022) Ensemble unsupervised autoencoders and gaussian mixture model for cyberattack detection. Inform Process Manag 59(2):102844

    Article 

    Google Scholar
     

  • Aumentado-Armstrong T, Tsogkas S, Jepson A, Dickinson S (2019) Geometric disentanglement for generative latent shape models. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 8181–8190

  • Azarang A, Kehtarnavaz N (2020) A review of multi-objective deep learning speech denoising methods. Speech Commun 122:1–10

    Article 

    Google Scholar
     

  • Balakrishnama S, Ganapathiraju A (1998) Linear discriminant analysis-a brief tutorial. Inst Signal Inform Process 18(1998):1–8


    Google Scholar
     

  • Bank D, Koenigstein N, Giryes R (2020) Autoencoders. arXiv preprint arXiv:2003.05991

  • Bank D, Koenigstein N, Giryes R (2023) Autoencoders. Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook 353–374

  • Bank D, Koenigstein N, Giryes R (2023) Autoencoders. Machine learning for data science handbook: Data mining and knowledge discovery handbook, pp 353–374

  • Berahmand K, Li Y, Xu Y (2023) DAC-HPP: deep attributed clustering with high-order proximity preserve. Neural Comput Appl pp 1–19

  • Bertalmio M, Sapiro G, CasellesV, Ballester C (2000) Image inpainting. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques, pp 417–424

  • Bhangale KB, Kothandaraman M (2022) Survey of deep learning paradigms for speech processing. Wireless Pers Commun 125(2):1913–1949

    Article 

    Google Scholar
     

  • Bursic S, Cuculo V, D’Amelio A (2019) Anomaly detection from log files using unsupervised deep learning. In: International symposium on formal methods, Springer, pp 200–207

  • Cacciarelli D, Kulahci M, Tyssedal J (2022) Online active learning for soft sensor development using semi-supervised autoencoders. arXiv preprint arXiv:2212.13067

  • Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Proceedings of the AAAI conference on artificial intelligence, vol. 30

  • Chai Z, Song W, Wang H, Liu F (2019) A semi-supervised auto-encoder using label and sparse regularizations for classification. Appl Soft Comput 77:205–217

    Article 

    Google Scholar
     

  • Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):1–58

    Article 

    Google Scholar
     

  • Charitou C, Garcez Ad, Dragicevic S (2020) Semi-supervised gans for fraud detection. In: 2020 international joint conference on neural networks (IJCNN), IEEE, pp 1–8

  • Charte D, Charte F, García S, del Jesus MJ, Herrera F (2018) A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inform Fus 44:78–96

    Article 

    Google Scholar
     

  • Che L, Yang X, Wang L (2020) Text feature extraction based on stacked variational autoencoder. Microprocess Microsyst 76:103063

    Article 

    Google Scholar
     

  • Chen S, Guo W (2023) Auto-encoders in deep learning-a review with new perspectives. Mathematics 11(8):1777

    Article 

    Google Scholar
     

  • Chen Y, Liu Y, Jiang D, Zhang X, Dai W, Xiong H, Tian Q (2022) Sdae: Self-distillated masked autoencoder. In: European conference on computer vision, Springer, pp 108–124

  • Chen M, Xu Z, Weinberger K, Sha F (2012) Marginalized denoising autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683

  • Chowdhary K, Chowdhary K (2020) Natural language processing. Fundamentals of artificial intelligence, pp 603–649

  • Cui P, Wang X, Pei J, Zhu W (2018) A survey on network embedding. IEEE Trans Knowl Data Eng 31(5):833–852

    Article 

    Google Scholar
     

  • Daneshfar F, Soleymanbaigi S, Nafisi A, Yamini P (2023) Elastic deep autoencoder for text embedding clustering by an improved graph regularization. Expert Syst Appl 121780

  • Debener J, Heinke V, Kriebel J (2023) Detecting insurance fraud using supervised and unsupervised machine learning. J Risk Insurance

  • Dehghan A, Ortiz EG, Villegas R, Shah M (2014) Who do i look like? determining parent-offspring resemblance via gated autoencoders. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1757–1764

  • DeLise T (2023) Deep semi-supervised anomaly detection for finding fraud in the futures market. arXiv preprint arXiv:2309.00088

  • Ding L, Liu G-W, Zhao B-C, Zhou Y-P, Li S, Zhang Z-D, Guo Y-T, Li A-Q, Lu Y, Yao H-W et al (2019) Artificial intelligence system of faster region-based convolutional neural network surpassing senior radiologists in evaluation of metastatic lymph nodes of rectal cancer. Chin Med J 132(04):379–387

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding S, Keal CA, Zhao L, Yu D (2022) Dimensionality reduction and classification for hyperspectral image based on robust supervised Isomap. J Ind Prod Eng 39(1):19–29


    Google Scholar
     

  • Ding Y, Zhuang J, Ding P, Jia M (2022) Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings. Reliab Eng Syst Saf 218:108126

    Article 

    Google Scholar
     

  • Dong Y, Chen K, Peng Y, Ma Z (2022) Comparative study on supervised versus semi-supervised machine learning for anomaly detection of in-vehicle can network. In: 2022 IEEE 25th international conference on intelligent transportation systems (ITSC), IEEE, pp 2914–2919

  • Du X, Yu J, Chu Z, Jin L, Chen J (2022) Graph autoencoder-based unsupervised outlier detection. Inf Sci 608:532–550

    Article 

    Google Scholar
     

  • Dutt A, Gader P (2023) Wavelet multiresolution analysis based speech emotion recognition system using 1d CNN LSTM networks. IN: IEEE/ACM Transactions on audio, speech, and language processing

  • Dzakiyullah NR, Pramuntadi A, Fauziyyah AK (2021) Semi-supervised classification on credit card fraud detection using autoencoders. J Appl Data Sci 2(1):01–07

    Article 

    Google Scholar
     

  • Fan H, Zhang F, Wei Y, Li Z, Zou C, Gao Y, Dai Q (2021) Heterogeneous hypergraph variational autoencoder for link prediction. IEEE Trans Pattern Anal Mach Intell 44(8):4125–4138


    Google Scholar
     

  • Fanai H, Abbasimehr H (2023) A novel combined approach based on deep autoencoder and deep classifiers for credit card fraud detection. Expert Syst Appl 217:119562

    Article 

    Google Scholar
     

  • Fan S, Wang X, Sh, C, Lu E, Lin K, Wang B (2020) One2multi graph autoencoder for multi-view graph clustering. In: Proceedings of the web conference 2020, pp 3070–3076

  • Farahnakian F, Heikkonen J (2018) A deep auto-encoder based approach for intrusion detection system. In: 2018 20th international conference on advanced communication technology (ICACT), IEEE, pp 178–183

  • Foti S, Koo B, Stoyanov D, Clarkson MJ (2022) 3d shape variational autoencoder latent disentanglement via mini-batch feature swapping for bodies and faces. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 18730–18739

  • Gaikwad SK, Gawali BW, Yannawar P (2010) A review on speech recognition technique. Int J Comput Appl 10(3):16–24


    Google Scholar
     

  • Gao Z, Cecati C, Ding SX (2015) A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron 62(6):3757–3767

    Article 

    Google Scholar
     

  • Gao Y, Wang L, Liu J, Dang J, Okada S (2023) Adversarial domain generalized transformer for cross-corpus speech emotion recognition. IEEE Trans Affect Comput. https://doi.org/10.1109/TAFFC.2023.3290795

    Article 

    Google Scholar
     

  • García-Mendoza J-L, Villaseñor-Pineda L, Orihuela-Espina F, Bustio-Martínez L (2022) An autoencoder-based representation for noise reduction in distant supervision of relation extraction. J Intell Fuzzy Syst 42(5):4523–4529

    Article 

    Google Scholar
     

  • Garson GD (2022) Factor analysis and dimension reduction in R: a social Scientist’s Toolkit. Taylor & Francis, New York

    Book 

    Google Scholar
     

  • Geng J, Fan J, Wang H, Ma X, Li B, Chen F (2015) High-resolution SAR image classification via deep convolutional autoencoders. IEEE Geosci Remote Sens Lett 12(11):2351–2355

    Article 
    ADS 

    Google Scholar
     

  • Ghorbani A, Fakhrahmad SM (2022) A deep learning approach to network intrusion detection using a proposed supervised sparse auto-encoder and SVM. Iran J Sci Technol Trans Electr Eng 46(3):829–846

    Article 

    Google Scholar
     

  • Girin L, Leglaive S, Bie X, Diard J, Hueber T, Alameda-Pineda X (2020) Dynamical variational autoencoders: a comprehensive review. arXiv preprint arXiv:2008.12595

  • Gorokhov O, Petrovskiy M, Mashechkin I, Kazachuk M (2023) Fuzzy CNN autoencoder for unsupervised anomaly detection in log data. Mathematics 11(18):3995

    Article 

    Google Scholar
     

  • Guo X, Liu X, Zhu E, Yin J (2017) Deep clustering with convolutional autoencoders. In: Neural information processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24, Springer, pp 373–382

  • Guo Z, Wang F, Yao K, Liang J, Wang Z (2022) Multi-scale variational graph autoencoder for link prediction. In: Proceedings of the Fifteenth ACM international conference on web search and data mining, pp 334–342

  • Guo Y, Zhou D, Ruan X, Cao J (2023) Variational gated autoencoder-based feature extraction model for inferring disease-Mirna associations based on multiview features. Neural Netw

  • Hadifar A, Sterckx L, Demeester T, Develder C (2019) A self-training approach for short text clustering. In: Proceedings of the 4th workshop on representation learning for NLP (RepL4NLP-2019), pp 194–199

  • Han C, Wang J (2021) Face image inpainting with evolutionary generators. IEEE Signal Process Lett 28:190–193

    Article 
    ADS 

    Google Scholar
     

  • Hara K, Shiomoto K (2022) Intrusion detection system using semi-supervised learning with adversarial auto-encoder. In: NOMS 2020-2020 IEEE/IFIP network operations and management symposium, IEEE, pp 1–8

  • Hasan BMS, Abdulazeez AM (2021) A review of principal component analysis algorithm for dimensionality reduction. J Soft Comput Data Min 2(1):20–30


    Google Scholar
     

  • He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S (2017) Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, pp 173–182

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8(5):393–402

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A (2016) beta-vae: Learning basic visual concepts with a constrained variational framework. In: International conference on learning representations

  • Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Hoang D-T, Kang H-J (2019) A survey on deep learning based bearing fault diagnosis. Neurocomputing 335:327–335

    Article 

    Google Scholar
     

  • Hoang T-N, Kim D (2022) Detecting in-vehicle intrusion via semi-supervised learning-based convolutional adversarial autoencoders. Veh Commun 38:100520


    Google Scholar
     

  • Hosseini S, Varzaneh ZA (2022) Deep text clustering using stacked autoencoder. Multimedia tools and applications 81(8):10861–10881

    Article 

    Google Scholar
     

  • Hosseini M, Celotti L, Plourde E (2021) Speaker-independent brain enhanced speech denoising. In: ICASSP 2021-2021 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 1310–1314

  • Hou L, Luo X-Y, Wang Z-Y, Liang J (2020) Representation learning via a semi-supervised stacked distance autoencoder for image classification. Front Inform Technol Electron Eng 21(7):1005–1018

    Article 

    Google Scholar
     

  • Hou Z, Liu X, Cen Y, Dong Y, Yang H, Wang C, Tang J (2022) Graphmae: Self-supervised masked graph autoencoders. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp 594–604

  • Huang G, Jafari AH (2023) Enhanced balancing GAN: minority-class image generation. Neural Comput Appl 35(7):5145–5154

    Article 
    PubMed 

    Google Scholar
     

  • Huang Z, Jin X, Lu C, Hou Q, Cheng M-M, Fu D, Shen X, Feng J (2022) Contrastive masked autoencoders are stronger vision learners. arXiv preprint arXiv:2207.13532

  • Ieracitano C, Adeel A, Morabito FC, Hussain A (2020) A novel statistical analysis and autoencoder driven intelligent intrusion detection approach. Neurocomputing 387:51–62

    Article 

    Google Scholar
     

  • Jain R, Kasturi R, Schunck BG et al (1995) Machine vision, vol 5. McGraw-hill New York, New York


    Google Scholar
     

  • Jaiswal G, Rani R, Mangotra H, Sharma A (2023) Integration of hyperspectral imaging and autoencoders: benefits, applications, hyperparameter tunning and challenges. Comput Sci Rev 50:100584

    Article 
    MathSciNet 

    Google Scholar
     

  • Jha S, Shah S, Ghamsani R, Sanghavi P, Shekokar NM (2023) Analysis of RNNs and different ML and DL classifiers on speech-based emotion recognition system using linear and nonlinear features. CRC Press, Boca Raton, pp 109–126


    Google Scholar
     

  • Jia K, Sun L, Gao S, Song Z, Shi BE (2015) Laplacian auto-encoders: an explicit learning of nonlinear data manifold. Neurocomputing 160:250–260

    Article 

    Google Scholar
     

  • Jiang S, Dong R, Wang J, Xia M (2023) Credit card fraud detection based on unsupervised attentional anomaly detection network. Systems 11(6):305

    Article 

    Google Scholar
     

  • Kennedy RK, Salekshahrezaee Z, Villanustre F, Khoshgoftaar TM (2023) Iterative cleaning and learning of big highly-imbalanced fraud data using unsupervised learning. J Big Data 10(1):106

    Article 

    Google Scholar
     

  • Kim S, Jang H, Hong S, Hong YS, Bae WC, Kim S, Hwang D (2021) Fat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization. Med Image Anal 73:102198

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv preprint arXiv:1611.07308

  • Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D (2019) Text classification algorithms: a survey. Information 10(4):150

    Article 

    Google Scholar
     

  • Książek K, Głomb P, Romaszewski M, Cholewa M, Grabowski B, Búza K (2022) Improving autoencoder training performance for hyperspectral unmixing with network reinitialisation. In: International Conference on Image Analysis and Processing, pp. 391–403. Springer

  • Kumar S, Rath SP, Pandey A (2022) Improved far-field speech recognition using joint variational autoencoder. arXiv preprint arXiv:2204.11286

  • Kunang YN, Nurmaini S, Stiawan D, Zarkasi A, et al (2018) Automatic features extraction using autoencoder in intrusion detection system. In: 2018 international conference on electrical engineering and computer science (ICECOS), IEEE, pp 219–224

  • Le T-D, Noumeir R, Rambaud J, Sans G, Jouvet P (2023) Adaptation of autoencoder for sparsity reduction from clinical notes representation learning. IEEE J Trans Eng Health Med

  • Lee J-w, Lee J (2017) Idae: Imputation-boosted denoising autoencoder for collaborative filtering. In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp2143–2146

  • Lee D, Seung HS (2000) Algorithms for non-negative matrix factorization. Adv Neural Inform Process Syst 13

  • Lei Y, Yang B, Jiang X, Jia F, Li N, Nandi AK (2020) Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech Syst Signal Process 138:106587

    Article 

    Google Scholar
     

  • Lewandowski B, Paffenroth R (2022) Autoencoder feature residuals for network intrusion detection: Unsupervised pre-training for improved performance. In: 2022 21st IEEE international conference on machine learning and applications (ICMLA), IEEE, pp 1334–1341

  • Li Y-J, Wang S-S, Tsao Y, Su B (2021) Mimo speech compression and enhancement based on convolutional denoising autoencoder. In: 2021 Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC), IEEE, pp 1245–1250

  • Li F, Zuraday J, Wu W (2018) Sparse representation learning of data by autoencoders with l\(\hat{}\) sub \(1/2\hat{}\) regularization. Neural Netw World 28(2):133–147

    Article 

    Google Scholar
     

  • Li H, Zhang L, Huang B, Zhou X (2020) Cost-sensitive dual-bidirectional linear discriminant analysis. Inf Sci 510:283–303

    Article 
    MathSciNet 

    Google Scholar
     

  • Li Z, Huang H, Zhang Z, Shi G (2022) Manifold-based multi-deep belief network for feature extraction of hyperspectral image. Remote Sens 14(6):1484

    Article 
    ADS 

    Google Scholar
     

  • Li X, Li C, Rahaman MM, Sun H, Li X, Wu J, Yao Y, Grzegorzek M (2022) A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev 55(6):4809–4878. https://doi.org/10.1007/s10462-021-10121-0

    Article 

    Google Scholar
     

  • Liang D, Krishnan RG, Hoffman MD, Jebara T (2018) Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, pp 689–698

  • Liao L, Cheng G, Ruan H, Chen K, Lu J (2022) Multichannel variational autoencoder-based speech separation in designated speaker order. Symmetry 14(12):2514

    Article 
    ADS 

    Google Scholar
     

  • Lin C-C, Hung Y, Feris R, He L (2020) Video instance segmentation tracking with a modified vae architecture. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 13147–13157

  • Li P, Pei Y, Li J (2023) A comprehensive survey on design and application of autoencoder in deep learning. Appl Soft Comput 110176

  • Liu Y, Ponce C, Brunton SL, Kutz JN (2023) Multiresolution convolutional autoencoders. J Comput Phys 474:111801

    Article 
    MathSciNet 

    Google Scholar
     

  • Lopes IO, Zou D, Abdulqadder IH, Ruambo FA, Yuan B, Jin H (2022) Effective network intrusion detection via representation learning: a denoising autoencoder approach. Comput Commun 194:55–65

    Article 

    Google Scholar
     

  • Luo W, Li J, Yang J, Xu W, Zhang J (2017) Convolutional sparse autoencoders for image classification. IEEE Trans Neural Netw Learn Syst 29(7):3289–3294

    MathSciNet 
    PubMed 

    Google Scholar
     

  • Luo W, Liu W, Gao S (2017) Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE international conference on multimedia and expo (ICME), IEEE pp 439–444

  • Ma M, Sun C, Chen X (2018) Deep coupling autoencoder for fault diagnosis with multimodal sensory data. IEEE Trans Ind Inf 14(3):1137–1145

    Article 

    Google Scholar
     

  • Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders. arXiv preprint arXiv:1511.05644

  • Ma S, Li X, Tang J, Guo F (2022) Eaa-net: Rethinking the autoencoder architecture with intra-class features for medical image segmentation. arXiv preprint arXiv:2208.09197

  • Marchi E, Vesperini F, Eyben F, Squartini S, Schuller B (2015) A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional lstm neural networks. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1996–2000. IEEE

  • Martínez V, Berzal F, Cubero J-C (2016) A survey of link prediction in complex networks. ACM Comput Surv 49(4):1–33

    Article 

    Google Scholar
     

  • McConville R, Santos-Rodriguez R, Piechocki RJ, Craddock I (2021) N2d:(not too) deep clustering via clustering the local manifold of an autoencoded embedding. In: 2020 25th international conference on pattern recognition (ICPR), IEEE, pp 5145–5152

  • McKeown K (1992) Text generation. Cambridge University Press, Cambridge


    Google Scholar
     

  • Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J 5(4):1093–1113

    Article 

    Google Scholar
     

  • Medsker LR, Jain L (2001) Recurrent neural networks. Design Appl 5(64–67):2


    Google Scholar
     

  • Meyer BH, Pozo ATR, Zola WMN (2022) Global and local structure preserving GPU t-SNE methods for large-scale applications. Expert Syst Appl 201:116918

    Article 

    Google Scholar
     

  • Miao J, Yang T, Sun L, Fei X, Niu L, Shi Y (2022) Graph regularized locally linear embedding for unsupervised feature selection. Pattern Recogn 122:108299

    Article 

    Google Scholar
     

  • Minkin A (2021) The application of autoencoders for hyperspectral data compression. In: 2021 international conference on information technology and nanotechnology (ITNT), IEEE, pp 1–4

  • Miuccio L, Panno D, Riolo S (2022) A wasserstein GAN autoencoder for SCMA networks. IEEE Wireless Commun Lett 11(6):1298–1302

    Article 

    Google Scholar
     

  • Molaei S, Ghorbani N, Dashtiahangar F, Peivandi M, Pourasad Y, Esmaeili M (2022) Fdcnet: presentation of the fuzzy CNN and fractal feature extraction for detection and classification of tumors. Comput Intell Neurosci 2022

  • Myronenko A (2019) 3d mri brain tumor segmentation using autoencoder regularization. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4, Springer, pp 311–320

  • Ng A et al (2011) Sparse autoencoder. CS294A Lecture Notes 72(2011):1–19


    Google Scholar
     

  • Nguyen HD, Tran KP, Thomassey S, Hamad M (2021) Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management. Int J Inf Manage 57:102282

    Article 

    Google Scholar
     

  • Ohgushi T, Horiguchi K, Yamanaka M (2020) Road obstacle detection method based on an autoencoder with semantic segmentation. In: proceedings of the Asian conference on computer vision

  • Palaz D, Collobert R (2015) Analysis of CNN-based speech recognition system using raw speech as input. Report, Idiap

  • Palsson B, Sveinsson JR, Ulfarsson MO (2022) Blind hyperspectral unmixing using autoencoders: a critical comparison. IEEE J Sel Topics Appl Earth Observ Remote Sens 15:1340–1372

    Article 
    ADS 

    Google Scholar
     

  • Pang G, Shen C, Cao L, Hengel AVD (2021) Deep learning for anomaly detection: a review. ACM Comput Surv 54(2):1–38

    Article 

    Google Scholar
     

  • Pang G, Shen C, Cao L, Hengel AVD (2021) Deep learning for anomaly detection: a review. ACM Comput Surv 54(2):1–38

    Article 

    Google Scholar
     

  • Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407

  • Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407

  • Papananias M, McLeay TE, Mahfouf M, Kadirkamanathan V (2023) A probabilistic framework for product health monitoring in multistage manufacturing using unsupervised artificial neural networks and gaussian processes. Proc Inst Mech Eng Part B: J Eng Manufact 237(9):1295–1310

    Article 

    Google Scholar
     

  • Paul D, Chakdar D, Saha S, Mathew J (2023) Online research topic modeling and recommendation utilizing multiview autoencoder-based approach. IEEE Trans Comput Soc Syst

  • Pereira RC, Santos MS, Rodrigues PP, Abreu PH (2020) Reviewing autoencoders for missing data imputation: technical trends, applications and outcomes. J Artif Intell Res 69:1255–1285

    Article 
    MathSciNet 

    Google Scholar
     

  • Petersson H, Gustafsson D, Bergstrom D (2016) Hyperspectral image analysis using deep learning-a review. In: 2016 sixth international conference on image processing theory, tools and applications (IPTA), IEEE, pp 1–6

  • Pratella D, Ait-El-Mkadem Saadi S, Bannwarth S, Paquis-Fluckinger V, Bottini S (2021) A survey of autoencoder algorithms to pave the diagnosis of rare diseases. Int J Mol Sci 22(19):10891

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Preechakul K, Chatthee N, Wizadwongsa S, Suwajanakorn S (2022) Diffusion autoencoders: Toward a meaningful and decodable representation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10619–10629

  • Qian J, Song Z, Yao Y, Zhu Z, Zhang X (2022) A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes. Chemometrics Intell Lab Syst, 104711

  • Ray P, Reddy SS, Banerjee T (2021) Various dimension reduction techniques for high dimensional data analysis: a review. Artif Intell Rev 54(5):3473–3515. https://doi.org/10.1007/s10462-020-09928-0

    Article 

    Google Scholar
     

  • Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788

  • Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th international conference on international conference on machine learning, pp 833–840

  • Rituerto-González E, Peláez-Moreno C (2021) End-to-end recurrent denoising autoencoder embeddings for speaker identification. Neural Comput Appl 33(21):14429–14439

    Article 

    Google Scholar
     

  • Ruff L, Vandermeulen RA, Görnitz N, Binder A, Müller E, Müller K-R, Kloft M (2019) Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694

  • Rumelhart DE, Hinton GE, Williams RJ, et al (1985) Learning internal representations by error propagation. Institute for Cognitive Science, University of California, San Diego La

  • Rusnac A-L, Grigore O (2022) CNN architectures and feature extraction methods for EEG imaginary speech recognition. Sensors 22(13):4679

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sae-Ang B-I, Kumwilaisak W, Kaewtrakulpong P (2022) Semi-supervised learning for defect segmentation with autoencoder auxiliary module. Sensors 22(8):2915

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagha H, Cummins N, Schuller B (2017) Stacked denoising autoencoders for sentiment analysis: a review. Wiley Interdiscip Rev Data Min Knowl Discov 7(5):1212

    Article 

    Google Scholar
     

  • Saha S, Minku LL, Yao X, Sendhoff B, Menzel S (2022) Split-ae: An autoencoder-based disentanglement framework for 3d shape-to-shape feature transfer. In: 2022 international joint conference on neural networks (IJCNN), IEEE, pp 1–9

  • Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, pp. 4–11

  • Salehi A, Davulcu H (2019) Graph attention auto-encoders. arXiv preprint arXiv:1905.10715

  • Salha G, Limnios S, Hennequin R, Tran V-A, Vazirgiannis M (2019) Gravity-inspired graph autoencoders for directed link prediction. In: Proceedings of the 28th ACM international conference on information and knowledge management, pp 589–598

  • Sayed HM, ElDeeb HE, Taie SA (2023) Bimodal variational autoencoder for audiovisual speech recognition. Mach Learn 112(4):1201–1226

    Article 
    MathSciNet 

    Google Scholar
     

  • Seki S, Kameoka H, Tanaka K, Kaneko T (2023) Jsv-vc: Jointly trained speaker verification and voice conversion models. In: ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 1–5

  • Semeniuta S, Severyn A, Barth E (2017) A hybrid convolutional variational autoencoder for text generation. arXiv preprint arXiv:1702.02390

  • Seyfioğlu MS, Özbayoğlu AM, Gürbüz SZ (2018) Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities. IEEE Trans Aerosp Electron Syst 54(4):1709–1723

    Article 
    ADS 

    Google Scholar
     

  • Shankar V, Parsana S (2022) An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing. J Acad Mark Sci 50(6):1324–1350

    Article 

    Google Scholar
     

  • Shi D, Zhao C, Wang Y, Yang H, Wang G, Jiang H, Xue C, Yang S, Zhang Y (2022) Multi actor hierarchical attention critic with RNN-based feature extraction. Neurocomputing 471:79–93

    Article 

    Google Scholar
     

  • Shixin P, Kai C, Tian T, Jingying C (2022) An autoencoder-based feature level fusion for speech emotion recognition. Digital Commun Netw

  • Shrestha N (2021) Factor analysis as a tool for survey analysis. Am J Appl Math Stat 9(1):4–11

    Article 
    MathSciNet 

    Google Scholar
     

  • Singh A, Ogunfunmi T (2022) An overview of variational autoencoders for source separation, finance, and bio-signal applications. Entropy 24(1):55

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Smatana M, Butka P (2019) Topicae: a topic modeling autoencoder. Acta Polytechnica Hungarica 16(4):67–86


    Google Scholar
     

  • Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF (2022) A survey on feature selection methods for mixed data. Artif Intell Rev 55(4):2821–2846. https://doi.org/10.1007/s10462-021-10072-6

    Article 

    Google Scholar
     

  • Song Y, Hyun S, Cheong Y-G (2021) Analysis of autoencoders for network intrusion detection. Sensors 21(13):4294

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song C, Liu F, Huang Y, Wang L, Tan T (2013) Auto-encoder based data clustering. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 18th Iberoamerican Congress, CIARP 2013, Havana, Cuba, November 20-23, 2013, Proceedings, Part I 18, pp 117–124. Springer

  • Srikotr T (2022) The improved speech spectral envelope compression based on VQ-VAE with adversarial technique. Thesis

  • Strub F, Mary J, Gaudel R (2016) Hybrid collaborative filtering with autoencoders. arXiv preprint arXiv:1603.00806

  • Strub F, Mary J, Philippe P (2015) Collaborative filtering with stacked denoising autoencoders and sparse inputs. In: NIPS workshop on machine learning for ecommerce

  • Su Y, Li J, Plaza A, Marinoni A, Gamba P, Chakravortty S (2019) DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 57(7):4309–4321

    Article 
    ADS 

    Google Scholar
     

  • Sudo T, Kanishima Y, Yanagihashi H (2021) A study of anomalous sound detection using autoencoder for quality determination and condition diagnosis. IEICE Tech. Rep. 121(284):20–25


    Google Scholar
     

  • Talpur N, Abdulkadir SJ, Alhussian H, Hasan MH, Aziz N, Bamhdi A (2023) Deep neuro-fuzzy system application trends, challenges, and future perspectives: a systematic survey. Artif Intell Rev 56(2):865–913. https://doi.org/10.1007/s10462-022-10188-3

    Article 
    PubMed 

    Google Scholar
     

  • Tanveer M, Rastogi A, Paliwal V, Ganaie M, Malik A, Del Ser J, Lin C-T (2023) Ensemble deep learning in speech signal tasks: a review. Neurocomputing 126436

  • Thai HH, Hieu ND, Van Tho N, Do Hoang H, Duy PT, Pham V-H (2022) Adversarial autoencoder and generative adversarial networks for semi-supervised learning intrusion detection system. In: 2022 RIVF international conference on computing and communication technologies (RIVF), IEEE, pp 584–589

  • Tian Y, Xu Y, Zhu Q-X, He Y-L (2022) Novel stacked input-enhanced supervised autoencoder integrated with gated recurrent unit for soft sensing. IEEE Trans Instrum Meas 71:1–9


    Google Scholar
     

  • Tian H, Zhang L, Li S, Yao M, Pan G (2023) Pyramid-VAE-GAN: transferring hierarchical latent variables for image inpainting. Comput Visual Med pp 1–15

  • Todd JT (2004) The visual perception of 3d shape. Trends Cogn Sci 8(3):115–121

    Article 
    PubMed 

    Google Scholar
     

  • Tripathi M (2021) Facial image denoising using autoencoder and UNET. Herit Sustain Dev 3(2):89–96

    Article 

    Google Scholar
     

  • Vahdat A, Kautz J (2020) Nvae: a deep hierarchical variational autoencoder. Adv Neural Inf Process Syst 33:19667–19679


    Google Scholar
     

  • Van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. Adv Neural Inform Process Syst 26

  • Van Der Maaten L, Postma EO, van den Herik HJ et al (2009) Dimensionality reduction: a comparative review. J Mach Learn Res 10(66–71):13


    Google Scholar
     

  • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(12)

  • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(12)

  • Wang W, Yang D, Chen F, Pang Y, Huang S, Ge Y (2019) Clustering with orthogonal autoencoder. IEEE Access 7:62421–62432

    Article 

    Google Scholar
     

  • Wang G, Karnan L, Hassan FM (2022) Face feature point detection based on nonlinear high-dimensional space. Int J Syst Assurance Eng Manag 13(Suppl 1):312–321

    Article 
    CAS 

    Google Scholar
     

  • Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1225–1234

  • Wang D, Li T, Deng P, Zhang F, Huang W, Zhang P, Liu J (2023) A generalized deep learning clustering algorithm based on non-negative matrix factorization. ACM Trans Knowledge Discovery Data

  • Wang C, Pan S, Long G, Zhu X, Jiang J (2017) Mgae: Marginalized graph autoencoder for graph clustering. In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp 889–898

  • Wang H, Wang N, Yeung D-Y (2015) Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp1235–1244

  • Wu C, Wu F, Wu S, Yuan Z, Liu J, Huang Y (2019) Semi-supervised dimensional sentiment analysis with variational autoencoder. Knowl-Based Syst 165:30–39

    Article 

    Google Scholar
     

  • Wubet YA, Lian K-Y (2022) Voice conversion based augmentation and a hybrid CNN-LSTM model for improving speaker-independent keyword recognition on limited datasets. IEEE Access 10:89170–89180

    Article 

    Google Scholar
     

  • Wu Y, DuBois C, Zheng AX, Ester M (2016) Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the Ninth ACM international conference on web search and data mining, pp 153–162

  • Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, PMLR, pp 478–487

  • Xu W, Keshmiri S, Wang G (2019) Adversarially approximated autoencoder for image generation and manipulation. IEEE Trans Multimed 21(9):2387–2396

    Article 

    Google Scholar
     

  • Xu H, Ding S, Zhang X, Xiong H, Tian Q (2022) Masked autoencoders are robust data augmentors. arXiv preprint arXiv:2206.04846

  • Xu W, Sun H, Deng C, Tan Y (2017) Variational autoencoder for semi-supervised text classification. In: Proceedings of the AAAI conference on artificial intelligence, vol. 31

  • Yan B, Han G (2018) Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system. IEEE Access 6:41238–41248

    Article 

    Google Scholar
     

  • Yang B, Fu X, Sidiropoulos ND, Hong M (2017) Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: International conference on machine learning, pp 3861–3870. PMLR

  • Yang X, Song Z, King I, Xu Z (2022) A survey on deep semi-supervised learning. IEEE Trans Knowl Data Eng

  • Ye H, Zhang W, Nie M (2022) An improved semi-supervised variational autoencoder with gate mechanism for text classification. Int J Pattern Recognit Artif Intell 36(10):2253006

    Article 

    Google Scholar
     

  • Ying LJ, Zainal A, Norazwan MN (2023) Stacked supervised auto-encoder with deep learning framework for nonlinear process monitoring and fault detection. In: AIP conference proceedings, vol. 2785. AIP Publishing

  • Yong BX, Brintrup A (2022) Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection. Expert Syst Appl 209:118196

    Article 

    Google Scholar
     

  • Zabalza J, Ren J, Zheng J, Zhao H, Qing C, Yang Z, Du P, Marshall S (2016) Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185:1–10

    Article 

    Google Scholar
     

  • Zhang Y, Zhang E, Chen W (2016) Deep neural network for halftone image classification based on sparse auto-encoder. Eng Appl Artif Intell 50:245–255

    Article 

    Google Scholar
     

  • Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv 52(1):1–38

    Article 
    ADS 

    Google Scholar
     

  • Zhang R, Yu L, Tian S, Lv Y (2019) Unsupervised remote sensing image segmentation based on a dual autoencoder. J Appl Remote Sens 13(3):038501–038501

    Article 
    ADS 

    Google Scholar
     

  • Zhang G, Liu Y, Jin X (2020) A survey of autoencoder-based recommender systems. Front Comp Sci 14:430–450

    Article 

    Google Scholar
     

  • Zhang G, Liu Y, Jin X (2020) A survey of autoencoder-based recommender systems. Front Comp Sci 14:430–450

    Article 

    Google Scholar
     

  • Zhang S, Yao L, Xu X, Wang S, Zhu L (2017) Hybrid collaborative recommendation via semi-autoencoder. In: Neural information processing: 24th international conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part I 24, Springer, pp 185–193

  • Zhang C, Zhang C, Song J, Yi JSK, Kweon IS (2023) A survey on masked autoencoder for visual self-supervised learning

  • Zhang C, Zhang C, Song J, Yi JSK, Zhang K, Kweon IS (2022) A survey on masked autoencoder for self-supervised learning in vision and beyond. arXiv preprint arXiv:2208.00173

  • Zhang C, Zhang C, Song J, Yi JSK, Zhang K, Kweon IS (2022) A survey on masked autoencoder for self-supervised learning in vision and beyond. arXiv preprint arXiv:2208.00173

  • Zhao K, Ding H, Ye K, Cui X (2021) A transformer-based hierarchical variational autoencoder combined hidden Markov model for long text generation. Entropy 23(10):1277

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou F, Wang G, Zhang K, Liu S, Zhong T (2023) Semi-supervised anomaly detection via neural process. IEEE Trans Knowl Data Eng

  • Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3d shape retrieval. Neurocomputing 204:41–50

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *