Uncategorized

A primer on the use of machine learning to distil knowledge from data in biological psychiatry



  • Alpaydin E. Machine learning, revised and updated edition. The MIT Press; 2021.

  • Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarca AL, Carey VJ, Chen X-W, Romero R, Drăghici S. Machine learning and its applications to biology. PLoS Comput Biol. 2007;3:e116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Ridder D, de Ridder J, Reinders MJT. Pattern recognition in bioinformatics. Brief Bioinform. 2013;14:633–47.

    Article 
    PubMed 

    Google Scholar
     

  • Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ. Multidimensional drug profiling by automated microscopy. Science. 2004;306:1194–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li A, Walling J, Ahn S, Kotliarov Y, Su Q, Quezado M, et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 2009;69:2091–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng W-Y, Ou Yang T-H, Anastassiou D. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med. 2013;5:181ra50.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng W-Y, Ou Yang T-H, Anastassiou D. Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol. 2013;9:e1002920.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao M, Igata H, Takeuchi A, Sato K, Ikegaya Y. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds. J Pharm Sci. 2017;133:70–8.

    Article 
    CAS 

    Google Scholar
     

  • Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE. 2016;104:176–97.

    Article 

    Google Scholar
     

  • Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York, NY: Springer; 2009.

  • Varghese B, Chen F, Hwang D, Palmer SL, De Castro Abreu AL, Ukimura O, et al. Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci Rep. 2019;9:1570.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey G, Pandey OP, Rogers AJ, Ahsen ME, Hoffman GE, Raby BA, et al. A nasal brush-based classifier of asthma identified by machine learning analysis of nasal RNA sequence data. Sci Rep. 2018;8:8826.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19:299–310.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, et al. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging. 2021;48:1736–58.

    Article 
    PubMed 

    Google Scholar
     

  • Oliveira AL. Biotechnology, Big Data and Artificial Intelligence. Biotechnol J. 2019;14:e1800613.

    Article 
    PubMed 

    Google Scholar
     

  • Iniesta R, Stahl D, McGuffin P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med. 2016;46:2455–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhn M, Johnson K. Applied predictive modeling. New York, NY: Springer; 2013.

  • Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

    Article 
    PubMed 

    Google Scholar
     

  • Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:223–30.

    PubMed 

    Google Scholar
     

  • Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev. 2017;74:58–75.

    Article 
    PubMed 

    Google Scholar
     

  • Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14:91–118.

    Article 
    PubMed 

    Google Scholar
     

  • Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev. 2015;57:328–49.

    Article 
    PubMed 

    Google Scholar
     

  • Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM, et al. Identification of a biological signature for schizophrenia in serum. Mol Psychiatry. 2012;17:494–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahn S, Noll R, Barnes A, Schwarz E, Guest PC. Challenges of introducing new biomarker products for neuropsychiatric disorders into the market. Int Rev Neurobiol. 2011;101:299–327.

    Article 
    PubMed 

    Google Scholar
     

  • Lee G, Nho K, Kang B, Sohn K-A, Kim D. Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci Rep. 2019;9:1952.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui R, Liu M. RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput Med Imaging Graph. 2019;73:1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Bellazzi R, Zupan B. Towards knowledge-based gene expression data mining. J Biomed Inf. 2007;40:787–802.

    Article 
    CAS 

    Google Scholar
     

  • Zhang C, Zhang S. Association rule mining: models and algorithms. Berlin, Heidelberg: Springer-Verlag; 2002.

  • Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41:15:1–15:58.

    Article 

    Google Scholar
     

  • Noto K, Majidi S, Edlow AG, Wick HC, Bianchi DW, Slonim DK. CSAX: characterizing systematic anomalies in eXpression data. J Comput Biol. 2015;22:402–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn TP, Nguyen T, Lee SC, Venkatesh S. Cancer as a tissue anomaly: classifying tumor transcriptomes based only on healthy data. Front Genet. 2019;10:599.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129:271–80.

    Article 
    PubMed 

    Google Scholar
     

  • Pinaya WHL, Mechelli A, Sato JR. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp. 2019;40:944–54.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang-James Y, Buitelaar JK, Rooij D, Faraone SV, The ENIGMA-ASD Working Group. Ensemble classification of autism spectrum disorder using structural magnetic resonance imaging features. JCPP Adv. 2021;1:e12042.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geddes TA, Kim T, Nan L, Burchfield JG, Yang JYH, Tao D, et al. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. BMC Bioinform. 2019;20:660.

    Article 
    CAS 

    Google Scholar
     

  • Gligorijevic V, Barot M, Bonneau R. deepNF: deep network fusion for protein function prediction. Bioinformatics. 2018;34:3873–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu X, Goldberg AB. Introduction to Semi-Supervised Learning. Synth Lect Artif Intell Mach Learn. 2009;3:1–130.


    Google Scholar
     

  • Mitchell TM. Machine learning. 1st ed. New York: McGraw-Hill Education; 1997.

  • Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.


    Google Scholar
     

  • Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15:233–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breen MS, Tylee DS, Maihofer AX, Neylan TC, Mehta D, Binder EB, et al. PTSD blood transcriptome mega-analysis: shared inflammatory pathways across biological sex and modes of trauma. Neuropsychopharmacology. 2018;43:469–81.

    Article 
    PubMed 

    Google Scholar
     

  • Bousman CA, Chana G, Glatt SJ, Chandler SD, Lucero GR, Tatro E, et al. Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:494–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vawter MP, Philibert R, Rollins B, Ruppel PL, Osborn TW. Exon array biomarkers for the differential diagnosis of schizophrenia and bipolar disorder. Mol Neuropsychiatry. 2018;3:197–213.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazeen S, Palmer NP, Berger B, Kohane IS. Integrative analysis of genetic data sets reveals a shared innate immune component in autism spectrum disorder and its co-morbidities. Genome Biol. 2016;17:228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong SW, Collins CD, Shimizu-Motohashi Y, Holm IA, Campbell MG, Lee I-H, et al. Characteristics and predictive value of blood transcriptome signature in males with autism spectrum disorders. PLoS One. 2012;7:e49475.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr. 2016;16:52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuang MT, Nossova N, Yager T, Tsuang M-M, Guo S-C, Shyu KG, et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:1–5.

    Article 
    PubMed 

    Google Scholar
     

  • Tylee DS, Hess JL, Quinn TP, Barve R, Huang H, Zhang-James Y, et al. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: a combined-samples mega-analysis. Am J Med Genet B Neuropsychiatr Genet. 2017;174:181–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi M, Hayashi H, Watanabe Y, Sawamura K, Fukui N, Watanabe J, et al. Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophr Res. 2010;119:210–8.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang H, Xie Z, Yang Y, Zhao Y, Zhang B, Fang J. The correlation-base-selection algorithm for diagnostic schizophrenia based on blood-based gene expression signatures. Biomed Res Int. 2017;2017:7860506.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi Z, Li Z, Yu S, Yuan C, Hong W, Wang Z, et al. Blood-based gene expression profiles models for classification of subsyndromal symptomatic depression and major depressive disorder. PLoS ONE. 2012;7:e31283.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Struyf J, Dobrin S, Page D. Combining gene expression, demographic and clinical data in modeling disease: a case study of bipolar disorder and schizophrenia. BMC Genomics. 2008;9:531.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breen MS, Uhlmann A, Nday CM, Glatt SJ, Mitt M, Metsalpu A, et al. Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report. Transl Psychiatry. 2016;6:e802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, et al. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia. Schizophr Res. 2016;176:114–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicodemus KK, Malley JD. Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics. 2009;25:1884–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicodemus KK, Malley JD, Strobl C, Ziegler A. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinform. 2010;11:110.

    Article 

    Google Scholar
     

  • Yassin W, Nakatani H, Zhu Y, Kojima M, Owada K, Kuwabara H, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry. 2020;10:278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho G, Yim J, Choi Y, Ko J, Lee S-H. Review of machine learning algorithms for diagnosing mental illness. Psychiatry Investig. 2019;16:262–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang-James Y, Chen Q, Kuja-Halkola R, Lichtenstein P, Larsson H, Faraone SV. Machine-Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data. J Child Psychol Psychiatry. 2020;61:1370–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang-James Y, Razavi AS, Hoogman M, Franke B, Faraone SV. Machine learning and MRI-based diagnostic models for ADHD: are we there yet? J Atten Disord. 2023;27:335–53.

    Article 
    PubMed 

    Google Scholar
     

  • Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry. 2016;3:243–50.

    Article 
    PubMed 

    Google Scholar
     

  • Nie Z, Vairavan S, Narayan VA, Ye J, Li QS. Predictive modeling of treatment resistant depression using data from STAR*D and an independent clinical study. PLoS ONE. 2018;13:e0197268.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenhard F, Sauer S, Andersson E, Månsson KN, Mataix-Cols D, Rück C, et al. Prediction of outcome in internet-delivered cognitive behaviour therapy for paediatric obsessive-compulsive disorder: a machine learning approach. Int J Methods Psychiatr Res. 2018;27:e1576.

    Article 
    PubMed 

    Google Scholar
     

  • Flygare O, Enander J, Andersson E, Ljótsson B, Ivanov VZ, Mataix-Cols D, et al. Predictors of remission from body dysmorphic disorder after internet-delivered cognitive behavior therapy: a machine learning approach. BMC Psychiatry. 2020;20:247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Breda W, Bremer V, Becker D, Hoogendoorn M, Funk B, Ruwaard J, et al. Predicting therapy success for treatment as usual and blended treatment in the domain of depression. Internet Inter. 2018;12:100–4.

    Article 

    Google Scholar
     

  • Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1:67–82.

    Article 

    Google Scholar
     

  • Koohy H. The rise and fall of machine learning methods in biomedical research. F1000Res. 2017;6:2012.

    Article 
    PubMed 

    Google Scholar
     

  • Molnar C. Interpretable machine learning. 2020. Lulu.com.

  • Gountouna V-E, Bermingham M, Kuznetsova K, Urda Munoz D, Agakov F, Robson S, et al. Predictive machine learning for personalised medicine in major depressive disorder. medRxiv. 2022. https://doi.org/10.1101/2022.02.11.22270724.

  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 2007;8:25.

    Article 

    Google Scholar
     

  • Boulesteix A-L, Slawski M. Stability and aggregation of ranked gene lists. Brief Bioinform. 2009;10:556–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma S, Dickerson J, Hines K. Counterfactual explanations for machine learning: challenges revisited. arXiv. 2021. https://doi.org/10.48550/arXiv.2106.07756.

  • Lundberg S, Lee S-I. A unified approach to interpreting model predictions. arXiv. 2017. https://doi.org/10.48550/arXiv.1705.07874.

  • Tsang M, Liu H, Purushotham S, Murali P, Liu Y. Neural interaction transparency (NIT): disentangling learned interactions for improved interpretability. 2018:5809–18.

  • Zhang Y, Yang Q. A Survey on Multi-Task Learning. IEEE Trans Knowl Data Eng. 2021. 1–1

  • Widmer C, Rätsch G. Multitask learning in computational biology. In: Guyon I, Dror G, Lemaire V, Taylor G, Silver D, editors. Proc. ICML Workshop Unsupervised Transf. Learn., vol. 27, Bellevue, Washington, USA.

  • Li Y, Wang J, Ye J, Reddy CK. A multi-task learning formulation for survival analysis. KDD 16, New York, NY, USA: ACM; 2016. p. 1715–24.

  • Yuan H, Paskov I, Paskov H, González AJ, Leslie CS. Multitask learning improves prediction of cancer drug sensitivity. Sci Rep. 2016;6:31619.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feriante J. Massively multitask deep learning for drug discovery. University of Wisconsin-Madison, 2015.

  • Xu Q, Pan SJ, Xue HH, Yang Q. Multitask learning for protein subcellular location prediction. IEEEACM Trans Comput Biol Bioinform. 2011;8:748–59.

    Article 

    Google Scholar
     

  • Zhou J, Liu J, Narayan VA, Ye J, Alzheimer’s Disease Neuroimaging Initiative. Modeling disease progression via multi-task learning. Neuroimage. 2013;78:233–48.

    Article 
    PubMed 

    Google Scholar
     

  • Perlich C. Learning curves in machine learning. In: Encyclopedia of machine learning and data mining, Boston, MA: Springer US; 2011. p. 577–80.

  • Barnett E, Onete D, Salekin A, Faraone SV Genomic machine learning meta-regression: Insights on associations of study features with reported model performance. BioRxiv. 2022. https://doi.org/10.1101/2022.01.10.22268751.

  • Stripelis D, Gupta U, Saleem H, Dhinagar N, Ghai T, Sanchez R, et al. Secure federated learning for neuroimaging. arXiv. 2022. https://doi.org/10.48550/arXiv.2205.05249.

  • Vaid A, Jaladanki SK, Xu J, Teng S, Kumar A, Lee S, et al. Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach. JMIR Med Inf. 2021;9:e24207.

    Article 

    Google Scholar
     

  • Zhai Y, Ong Y-S, Tsang IW. The Emerging ‘Big Dimensionality’. IEEE Comput Intell Mag. 2014;9:14–26.

    Article 

    Google Scholar
     

  • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang J, Alelyani S, Liu H. Feature selection for classification: a review. data classif. Algorithms Appl., CRC Press; 2014. p. 37–64.

  • Sorzano COS, Vargas J, Pascual Montano A. A survey of dimensionality reduction techniques. ArXiv. 2014. https://doi.org/10.48550/arXiv.1403.2877

  • Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics. 2010;26:440–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Feature selection for high-dimensional data. Springer; 2015.

  • Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA. 2002;99:6562–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016.

  • Quinn TP, Lee SC, Venkatesh S, Nguyen T. Improving the classification of neuropsychiatric conditions using gene ontology terms as features. Am J Med Genet B Neuropsychiatr Genet. 2019;180:508–18.

    Article 
    PubMed 

    Google Scholar
     

  • Chawla NV Data Mining for Imbalanced Datasets: An Overview. In: Maimon O, Rokach L, editors. Data mining and knowledge discovery handbook. Boston, MA: Springer US; 2005. p. 853–67.

  • Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015;10:e0118432.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altman N, Krzywinski M. Graphical assessment of tests and classifiers. Nat Methods. 2021;18:840–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, Adeli E, Pohl KM. Training confounder-free deep learning models for medical applications. Nat Commun. 2020;11:6010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loughman A, Quinn T, Nation ML, Reichelt A, Moore RJ, Van TTH, et al. Infant microbiota in colic: predictive associations with problem crying and subsequent child behavior. J Dev Orig Health Dis. 2021;12:260–70.

  • Wang H, Wu Z, Xing EP. Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications. Pac Symp Biocomput. 2019;24:54–65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, et al. Domain-adversarial training of neural networks. J Mach Learn Res. 2016;17:2096–30.


    Google Scholar
     

  • Liu Y, Nyunoya T, Leng S, Belinsky SA, Tesfaigzi Y, Bruse S. Softwares and methods for estimating genetic ancestry in human populations. Hum Genomics. 2013;7:1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3:1724–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med. 2018;169:866–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn TP, Coghlan S. Readying medical students for medical AI: the need to embed AI ethics education. ArXiv. 2021. https://doi.org/10.48550/arXiv.2109.02866.

  • Food and Drug Administration (FDA). Artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD) action plan.

  • Franco D, Oneto L, Navarin N, Anguita D. Toward learning trustworthily from data combining privacy, fairness, and explainability: an application to face recognition. Entropy Basel Switz. 2021;23:1047.

  • Nicodemus KK, Callicott JH, Higier RG, Luna A, Nixon DC, Lipska BK, et al. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Hum Genet. 2010;127:441–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicodemus KK, Law AJ, Radulescu E, Luna A, Kolachana B, Vakkalanka R, et al. Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Arch Gen Psychiatry. 2010;67:991–1001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.

    Article 
    PubMed 

    Google Scholar
     

  • Song X, Liu X, Liu F, Wang C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. Int J Med Inf. 2021;151:104484.

    Article 

    Google Scholar
     

  • Smith DL, Held P. Moving toward precision PTSD treatment: predicting veterans’ intensive PTSD treatment response using continuously updating machine learning models. Psychol Med. 2023;53:5500–9.

  • Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, et al. Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophr Res. 2020;217:124–35.

    Article 
    PubMed 

    Google Scholar
     

  • Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf Fusion. 2019;50:71–91.

    Article 
    PubMed 

    Google Scholar
     

  • Schwarz E, Leweke FM, Bahn S, Liò P. Clinical bioinformatics for complex disorders: a schizophrenia case study. BMC Bioinform. 2009;10:S6.

    Article 

    Google Scholar
     

  • Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat Commun. 2018;9:3003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shomorony I, Cirulli ET, Huang L, Napier LA, Heister RR, Hicks M, et al. Unsupervised integration of multimodal dataset identifies novel signatures of health and disease. BioRxiv. 2018. https://doi.org/10.1101/432641.

  • Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14:e8124.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koutsouleris N, Meisenzahl EM, Borgwardt S, Riecher-Rössler A, Frodl T, Kambeitz J, et al. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain. 2015;138:2059–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. Neuroimage Clin. 2017;15:719–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao H, Duan J, Lin D, Shugart YY, Calhoun V, Wang Y-P. Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs. Neuroimage. 2014;102:220–8.

    Article 
    PubMed 

    Google Scholar
     

  • Li YC, Wang L, Law JN, Murali TM, Pandey G. Integrating multimodal data through interpretable heterogeneous ensembles. Bioinforma Adv. 2022;2:vbac065.

    Article 

    Google Scholar
     

  • Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15:20170387.

  • Lin E, Kuo P-H, Liu Y-L, Yu YW-Y, Yang AC, Tsai S-J. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry. 2018;9:290.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundaram L, Bhat RR, Viswanath V, Li X. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning. Hum Mutat. 2017;38:1217–24.

    Article 
    PubMed 

    Google Scholar
     

  • Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, et al. Deep learning for neuroimaging: a validation study. Front Neurosci. 2014;8:229.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan, Loh BK, Finucane P-R, Ripke HK, Yang S, Schizophrenia Working Group of the Psychiatric Genomics Consortium J, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krapohl E, Patel H, Newhouse S, Curtis CJ, von Stumm S, Dale PS, et al. Multi-polygenic score approach to trait prediction. Mol Psychiatry. 2018;23:1368–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnett EJ, Biederman J, Doyle AE, Hess J, DiSalvo M, Faraone SV. Identifying pediatric mood disorders from transdiagnostic polygenic risk scores: a study of children and adolescents. J Clin Psychiatry. 2022;83:40635.

  • Chen J, Schwarz E. BioMM: Biologically-informed Multi-stage Machine learning for identification of epigenetic fingerprints. arXiv:171200336. 2017. https://doi.org/10.48550/arXiv.1712.00336.

  • Vu M-AT, Adalı T, Ba D, Buzsáki G, Carlson D, Heller K, et al. A shared vision for machine learning in neuroscience. J Neurosci. 2018;38:1601–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang J, Rancati T, Lee S, Oh JH, Kerns SL, Scott JG, et al. Machine learning and radiogenomics: lessons learned and future directions. Front Oncol. 2018;8:228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shrager J, Tenenbaum JM. Rapid learning for precision oncology. Nat Rev Clin Oncol. 2014;11:109.

    Article 
    PubMed 

    Google Scholar
     

  • Doyle-Lindrud S. Watson will see you now: a supercomputer to help clinicians make informed treatment decisions. Clin J Oncol Nurs. 2015;19:31–2.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16:933–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neale B. Perspective on data sharing and open science in psychiatric genetics. Eur Neuropsychopharmacol. 2019;29:S778.

  • Bell V. Open science in mental health research. Lancet Psychiatry. 2017;4:525–6.

    Article 
    PubMed 

    Google Scholar
     

  • Hardwicke TE, Mathur MB, MacDonald K, Nilsonne G, Banks GC, Kidwell MC, et al. Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal Cognition. R Soc Open Sci. 2018;5:180448.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • National Research Council (US) Committee on Applied, Statistics T. The current state of data integration in science. USA: National Academies Press; 2010.

  • Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Børglum AD, Breen G, et al. Psychiatric Genomics: An Update and an Agenda. Am J Psychiatry. 2018;175:15–27.

    Article 
    PubMed 

    Google Scholar
     

  • MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45:D896–D901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Z, Spruit M. A systematic review of open source clinical software on GitHub for improving software reuse in smart healthcare. NATO Adv Sci Inst Ser E Appl Sci. 2019;9:150.


    Google Scholar
     

  • Guinney J, Saez-Rodriguez J. Alternative models for sharing confidential biomedical data. Nat Biotechnol. 2018;36:391–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-omics data integration methods. Front Genet. 2017;8:84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapatas V, Stefanidakis M, Jimenez RC, Via A, Schneider MV. Data integration in biological research: an overview. J Biol Res. 2015;22:9.


    Google Scholar
     

  • Lam RW, Milev R, Rotzinger S, Andreazza AC, Blier P, Brenner C, et al. Discovering biomarkers for antidepressant response: protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry. 2016;16:105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell. 1997;97:245–71.

    Article 

    Google Scholar
     

  • Kolachalama VB, Garg PS. Machine learning and medical education. Npj Digit Med. 2018;1:54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hekler A, Utikal JS, Enk AH, Solass W, Schmitt M, Klode J, et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer Oxf Engl. 2019;118:91–6.

    Article 

    Google Scholar
     

  • McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Manning C. Fast dropout training. In: Dasgupta S, McAllester D, editors. Proc. 30th International Conference on Machine Learning, vol. 28, PMLR: Atlanta, Georgia, USA; 2013. p. 118–26.

  • Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. ArXiv. 2017. https://doi.org/10.48550/arXiv.1612.01474.

  • Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing. 2019;338:34–45.

    Article 

    Google Scholar
     

  • Dolezal JM, Srisuwananukorn A, Karpeyev D, Ramesh S, Kochanny S, Cody B, et al. Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology. Nat Commun. 2022;13:6572.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tandon N, Tandon R. Machine learning in psychiatry- standards and guidelines. Asian J Psychiatr. 2019;44:A1–A4.

    Article 
    PubMed 

    Google Scholar
     

  • Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. ArXiv. 2019. https://doi.org/10.48550/arXiv.1910.10045.

  • Bollen KA, Jackman RW. Regression diagnostics: an expository treatment of outliers and influential cases. Socio Methods Res. 1985;13:510–42.

    Article 

    Google Scholar
     

  • Samiei M, Würfl T, Deleu T, Weiss M, Dutil F, Fevens T, et al. The TCGA meta-dataset clinical benchmark. ArXiv. 2019. https://doi.org/10.48550/arXiv.1910.08636.

  • Feng J, Xu H, Mannor S, Yan S. Robust logistic regression and classification. In: Advances in neural information processing systems, vol. 27, Curran Associates, Inc.; 2014.

  • Ying X. An overview of overfitting and its solutions. J Phys Confer Ser. 2019;1168:022022.

    Article 

    Google Scholar
     

  • Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev. 2012;36:1140–52.

    Article 
    PubMed 

    Google Scholar
     

  • Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation with a limited sample size. PLoS ONE. 2019;14:e0224365.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramteke RJ, Khachane M. Automatic medical image classification and abnormality detection using K- nearest neighbour. Int J Adv Comput Res. 2012;2:190–6.


    Google Scholar
     

  • Awoyemi JO, Adetunmbi AO, Oluwadare SA. Credit card fraud detection using machine learning techniques: a comparative analysis. 2017 Int. Confer. Comput. Netw. Inform. Lagos, Nigeria: ICCNI; 2017. p. 1–9.

  • Delgadillo J, Lutz W. A development pathway towards precision mental health care. JAMA Psychiatry. 2020;77:889.

    Article 
    PubMed 

    Google Scholar
     

  • Lutz W, Schwartz B, Martín Gómez Penedo J, Boyle K, Deisenhofer A-K. Working towards the development and implementation of precision mental healthcare: an example. Adm Policy Ment Health. 2020;47:856–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heckerman D A Bayesian Approach to Learning Causal Networks. ArXiv. 2015. https://doi.org/10.48550/arXiv.1302.4958.

  • Madar IH, Sultan G, Tayubi IA, Hasan AN, Pahi B, Rai A, et al. Identification of marker genes in Alzheimer’s disease using a machine-learning model. Bioinformation. 2021;17:348–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y-C, Wheeler TA, Kochenderfer MJ. Learning discrete bayesian networks from continuous data. J Artif Intell Res. 2017;59:103–32.

    Article 

    Google Scholar
     

  • Cheng J, Liu H-P, Lin W-Y, Tsai F-J. Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease. Sci Rep. 2021;11:13704.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dwyer K, Holte R. Decision Tree Instability and Active Learning. In: Kok JN, Koronacki J, de Mantaras RL, Matwin S, Mladenič D, Skowron A, editors. Mach. Learn. ECML 2007, Berlin, Heidelberg: Springer; 2007. p. 128–39.

  • Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci. 2001;16:199–231.

    Article 

    Google Scholar
     

  • Ainscough BJ, Barnell EK, Ronning P, Campbell KM, Wagner AH, Fehniger TA, et al. A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data. Nat Genet. 2018;50:1735–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sole X, Ramisa A, Torras C. Evaluation of random forests on large-scale classification problems using a Bag-of-Visual-Words representation.

  • Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York, NY: Springer; 2009.

  • Vangay P, Hillmann BM, Knights D. Microbiome Learning Repo (ML Repo): a public repository of microbiome regression and classification tasks. GigaScience. 2019;8:giz042.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Nettleton D, Zhu Z. Regression-enhanced random forests. ArXiv. 2019. https://doi.org/10.48550/arXiv.1904.10416.

  • Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012;29:82–97.

    Article 

    Google Scholar
     

  • Suk H-I, Shen D. Deep learning-based feature representation for AD/MCI classification. Med Image Comput Comput Assist Interv. 2013;16:583–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Telenti A, Lippert C, Chang P-C, DePristo M. Deep learning of genomic variation and regulatory network data. Hum Mol Genet. 2018;27:R63–R71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, et al. Residual Attention Network for Image Classification. arXiv:170406904. 2017. https://doi.org/10.48550/arXiv.1704.06904.

  • Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag. 2018;13:55–75.

    Article 

    Google Scholar
     

  • Zrimec J, Börlin CS, Buric F, Muhammad AS, Chen R, Siewers V, et al. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat Commun. 2020;11:6141.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey M, Fernandez M, Gentile F, Isayev O, Tropsha A, Stern AC, et al. The transformational role of GPU computing and deep learning in drug discovery. Nat Mach Intell. 2022;4:211–21.

    Article 

    Google Scholar
     

  • Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology. 2021;46:176–90.

    Article 
    PubMed 

    Google Scholar
     

  • Alwosheel A, van Cranenburgh S, Chorus CG. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J Choice Model. 2018;28:167–82.

    Article 

    Google Scholar
     

  • Passafaro TL, Lopes FB, Dórea JRR, Craven M, Breen V, Hawken RJ, et al. Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers. BMC Genomics. 2020;21:771.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *