Uncategorized

A machine learning system to identify progress level of dry rot disease in potato tuber based on digital thermal image processing



  • Kheiralipour, K. Sustainable Production, Definitions, Aspects, and Elements (Nova Science Publishers, 2022).

    Book 

    Google Scholar
     

  • Wang, N., Reidsma, P., Pronk, A. A., de Wit, A. J. W. & van Ittersum, M. K. Can potato add to China’s food self-sufficiency? The scope for increasing potato production in China. Eur. J. Agron. 101, 20–29 (2018).

    Article 

    Google Scholar
     

  • Bojanowski, A., Avis, T. J., Pelletier, S. & Tweddell, R. J. Management of potato dry rot. Postharvest Biol. Technol. 84, 99–109 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mecteau, M. R., Arul, J. & Tweddell, R. J. Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycol. Res. 106(6), 688–696 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Mecteau, M. R., Arul, J. & Tweddell, R. J. Effect of different salts on the development of Fusarium solani var coeruleum, a causal agent of potato dry rot. Phytoprotection 89(1), 1–6 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Stefanczyk, E., Sobkowiak, S., Brylinska, M. & Sliwka, J. Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland. Eur. J. Plant Pathol. 145(4), 871–884 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Islam, M., Dinh, A., Wahid, K. & Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector machine. In IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE) (IEEE, 2017).

  • Teena, M., Manickavasagan, A., Mothershaw, A., El Hadi, S. & Jayas, D. S. Potential of machine vision techniques for detecting fecal and microbial contamination of food products: A review. Food Bioprocess Technol. 6, 1621–1634 (2013).

    Article 

    Google Scholar
     

  • Kheiralipour, K. et al. Processing the hyperspectral images for detecting infection of pistachio kernel by R5 and KK11 isolates of Aspergillus flavus fungus. Iran. J. Biosyst. Eng. 52(1), 13–25 (2021).


    Google Scholar
     

  • Vadivambal, R. & Jayas, D. S. Applications of thermal imaging in agriculture and food industry—a review. Food Bioprocess Technol. 4, 186–199 (2011).

    Article 

    Google Scholar
     

  • Saccon, F. A. M., Parcey, D., Paliwal, J. & Sherif, S. S. Assessment of fusarium and deoxynivalenol using optical methods. Food Bioprocess Technol. 10, 34–50 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kheiralipour, K., Ahmadi, H., Rajabipour, A. & Rafiee, S. Thermal Imaging, Principle, Methods, and Applications (Ilam University Publication, 2018).


    Google Scholar
     

  • Kheiralipour, K., Chelladurai, V. & Jayas, D. S. Imaging systems and image processing techniques. In Image Processing: Advances in Applications and Research (ed. Jayas, D. S.) (Nova Science Publishers, 2023).


    Google Scholar
     

  • Manickavasagan, A., Jayas, D. S., White, N. D. G. & Paliwal, J. Wheat class identification using thermal imaging. Food Bioprocess Technol. 3, 450–460 (2010).

    Article 

    Google Scholar
     

  • Kheiralipour, K., Sing, C. B. & Jayas, D. S. Applications of visible, thermal, and hyperspectral imaging techniques in the assessment of fruits and vegetables. In Image Processing: Advances in Applications and Research (ed. Jayas, D. S.) (Nova Science Publishers, 2023).


    Google Scholar
     

  • Gowen, A. A., Tiwari, B. K., Cullen, P. J., McDonnell, K. & O’Donnell, C. P. Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 21(4), 190–200 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q., Zhang, C., Zhao, J. & Ouyang, Q. Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety. TrAC Trends Anal. Chem. 52, 261–274 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mutka, A. M. & Bart, R. S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 5, 734 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Zia-Khan, S., Owusu-Adu, S., Miedaner, T. & Muller, J. Early detection of zymoseptoria tritici in winter wheat by infrared thermography. Agriculture 9(7), 139 (2019).

    Article 

    Google Scholar
     

  • Park, J. & Kim, K. W. Outdoor infrared imaging for spatial and temporal thermography: A case study of necrotic versus healthy leaf areas on woody plants. J. Phytopathol. 169, 62–70 (2020).

    Article 

    Google Scholar
     

  • Chelladurai, V., Jayas, D. S. & White, N. D. G. Thermal imaging for detecting fungal infection in stored wheat. J. Stored Prod. Res. 46(3), 174–179 (2010).

    Article 

    Google Scholar
     

  • Senthilkumar, T., Jayas, D. S., White, N. D. G., Fields, P. G. & Grafenhan, T. Detection of fungal infection and Ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging. J. Stored Prod. Res. 65, 30–39 (2016).

    Article 

    Google Scholar
     

  • Kheiralipour, K. et al. Development of a new threshold based classification model for analyzing thermal imaging data to detect fungal infection of pistachio kernel. Agric. Res. 2(2), 127–131 (2013).

    Article 

    Google Scholar
     

  • Kheiralipour, K. et al. Detection of fungal infection in pistachio kernel by long-wave near-infrared hyperspectral imaging technique. Qual. Assur. Saf. Crops Foods 8(1), 129–135 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wawrzyniak, J. Model of fungal development in stored barley ecosystems as a prognostic auxiliary tool for postharvest preservation systems. Food Bioprocess Technol. 14, 298–309 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kheiralipour, K. & Pormah, A. Introducing new shape features for classification of cucumber fruit based on image processing technique and artificial neural networks. J. Food Process Eng. 40(6), 12558 (2017).

    Article 

    Google Scholar
     

  • Azadnia, R. & Kheiralipour, K. Evaluation of hawthorns maturity level by developing an automated machine learning-based algorithm. Ecol. Inform. 71, 101804 (2022).

    Article 

    Google Scholar
     

  • Almeida, M., Torrance, K. E. & Datta, A. K. Measurement of optical properties of foods in near- and mid-infrared radiation. Int. J. Food Prop. 9, 651–664 (2006).

    Article 

    Google Scholar
     

  • Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S. & Javan-Nikkhah, M. Classifying healthy and fungal infected-pistachio kernel by thermal imaging technology. Int. J. Food Prop. 18, 93–99 (2015).

    Article 

    Google Scholar
     

  • Agrios, G. N. Plant pathology 5th edn. Department of Plant Pathology. University of Florida, United States of America (2005).

  • Sharifi, K., Zare, R. & Zamanizadeh, H. R. Arjmandian A Fusarium species causing dry rot of potatoes in Ardabil, Tehran and Hamedan Provinces. Appl. Entomol. Phytopathol. 76(2), 93–113 (2009).


    Google Scholar
     

  • Chen, D. et al. A simple and efficient inoculation method for Fusarium dry rot evaluations in potatoes. Am. J. Potato Res. 97(3), 265–271 (2020).

    Article 

    Google Scholar
     

  • Chehri, K., Ghasempour, H. R. & Karimi, N. Molecular phylogenetic and pathogenetic characterization of Fusarium solani species complex (FSSC), the cause of dry rot on potato in Iran. Microb. Pathog. 67, 14–19 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Farokhzad, S. The detection of fungi infection in potato (Fusarium solani) using thermography. Ph.D. Dissertation, Urmia University, Urmia, Iran (2017).

  • Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673. https://doi.org/10.1038/37757 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, M., Yu, W. & Zhu, D. An improved image segmentation algorithm based on the Otsu method. In 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (IEEE, 2012).

  • Taheri-Garavand, A. et al. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique. Appl. Therm. Eng. 87, 434–443 (2015).

    Article 

    Google Scholar
     

  • Aygun, S. & Gunes, E. O. A benchmarking, Feature extraction and classification of agricultural textures using LBP, GLCM, RBO, Neural Networks, k-NN, and random forest. In 6th International Conference on Agro-Geoinformatics (IEEE, 2017).

  • Patricio, D. I. & Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018).

    Article 

    Google Scholar
     

  • Khazaee, Y., Kheiralipour, K., Hosainpour, A., Javadikia, H. & Paliwal, J. Development of a novel image analysis and classification algorithms to separate tubers from clods and stones. Potato Res. 65(1), 1–22 (2022).


    Google Scholar
     

  • Kheiralipour, K., Nadimi, M. & Paliwal, J. Development of an intelligent imaging system for ripeness determination of wild pistachios. Sensors 22(19), 7134 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azadnia, R. & Kheiralipour, K. Recognition of leaves of different medicinal plant species using a robust image processing algorithm and artificial neural networks classifier. J. Appl. Res. Med. Aromat. Plants 25, 100327 (2021).


    Google Scholar
     

  • Tirumazhisai Manivannan, K. Development of gray level co-occurrence matrix based support vector machines for particulate matter characterization. University of Toledo (2012).

  • Hosainpour, A., Kheiralipour, K., Nadimi, M. & Paliwal, J. Quality assessment of dried white mulberry (Morus alba L.) using machine vision. Horticulturae 89(11), 1011 (2022).

    Article 

    Google Scholar
     

  • Salam, S., Kheiralipour, K. & Jian, F. Detection of unripe kernels and foreign materials in chickpea mixtures using image processing. Agriculture 12(7), 995 (2022).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *