Uncategorized

Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology



  • Abraham MT, Satyam N, Pradhan B, Alamri AM (2020) Forecasting of landslides using rainfall severity and soil wetness: a probabilistic approach for Darjeeling Himalayas. Water (switzerland) 12:1–19. https://doi.org/10.3390/w12030804

    Article 

    Google Scholar
     

  • Ahmed B (2015) Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 12:1077–1095. https://doi.org/10.1007/s10346-014-0521-x

    Article 

    Google Scholar
     

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58:21–44. https://doi.org/10.1007/s100640050066

    Article 

    Google Scholar
     

  • Arabameri A, Pourghasemi HR, Yamani M (2017) Applying different scenarios for landslide spatial modeling using computational intelligence methods. Environ Earth Sci 76:1–20. https://doi.org/10.1007/s12665-017-7177-5

    Article 

    Google Scholar
     

  • Arabameri A, Pradhan B, Rezaei K (2019a) Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. J Environ Manag 232:928–942. https://doi.org/10.1016/j.jenvman.2018.11.110

    Article 

    Google Scholar
     

  • Arabameri A, Pradhan B, Rezaei K et al (2019b) GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J Mt Sci 16:595–618. https://doi.org/10.1007/s11629-018-5168-y

    Article 

    Google Scholar
     

  • Arabameri A, Rezaei K, Cerda A et al (2019c) GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci Total Environ 658:160–177. https://doi.org/10.1016/j.scitotenv.2018.12.115

    Article 
    CAS 

    Google Scholar
     

  • Arabameri A, Roy J, Saha S et al (2019d) Application of probabilistic and machine learning models for groundwater potentiality mapping in Damghan sedimentary plain, Iran. Remote Sens 11:3015

    Article 

    Google Scholar
     

  • Arabameri A, Pradhan B, Rezaei K et al (2020) An ensemble model for landslide susceptibility mapping in a forested area. Geocarto Int 35:1680–1705. https://doi.org/10.1080/10106049.2019.1585484

    Article 

    Google Scholar
     

  • Bolt BA, Horn WL, Macdonald GA, Scott RF (1986) Geological Hazards: Earthquakes – Tsunamis – Volcanoes – Avalanches – Landslides – Floods. Springer New York, New York. https://doi.org/10.1007/978-1-4615-7101-8

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: International landslide symposium proceedings, Toronto, Canada. Japan Landslide Society, Tokyo, Japan, pp 17–22

  • Carabella C, Cinosi J, Piattelli V et al (2022) Earthquake-induced landslides susceptibility evaluation: a case study from the Abruzzo region (Central Italy). CATENA 208:105729

    Article 

    Google Scholar
     

  • Chang K-T, Merghadi A, Yunus AP et al (2019) Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep 9:1–21


    Google Scholar
     

  • Chen Z, Wang J (2007) Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada. Nat Hazards 42:75–89

    Article 

    Google Scholar
     

  • Chowdhuri I, Pal SC, Chakrabortty R et al (2021a) Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya. Nat Hazards 107:697–722

    Article 

    Google Scholar
     

  • Chowdhuri I, Pal SC, Chakrabortty R et al (2021b) Spatial prediction of landslide susceptibility using projected storm rainfall and land use in Himalayan region. Bull Eng Geol Env 80:5237–5258

    Article 

    Google Scholar
     

  • Corominas J, van Westen C, Frattini P et al (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Env 73:209–263


    Google Scholar
     

  • Cruden DM (1991) A simple definition of a landslide. Bulletin of International Association of Engineering Geology 43:27–29. https://doi.org/10.1007/BF02590167

  • Devkota KC, Regmi AD, Pourghasemi HR et al (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article 

    Google Scholar
     

  • Dou J, Yunus AP, Tien Bui D et al (2019) Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the LiDAR DEM. Remote Sens 11:638

    Article 

    Google Scholar
     

  • Dou J, Oguchi T, S. Hayakawa Y, et al (2014) GIS-Based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan. In: Landslide Science for a Safer Geoenvironment. Springer International Publishing, Cham, pp 419–424

  • el Abidine RZ, Abdelmansour N (2019) Landslide susceptibility mapping using information value and frequency ratio for the Arzew sector (North-Western of Algeria). Bull Miner Res Explor 160:197–211


    Google Scholar
     

  • Fell R, Whitt G, Miner T, Flentje P (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:83–84

    Article 

    Google Scholar
     

  • Ghosh S, van Westen CJ, Carranza EJM et al (2012) Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Eng Geol 128:49–62. https://doi.org/10.1016/j.enggeo.2011.03.016

    Article 

    Google Scholar
     

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article 

    Google Scholar
     

  • Guzzetti F, Mondini AC, Cardinali M et al (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article 

    Google Scholar
     

  • Hasegawa S, Nonomura A, Nakai S, Dahal RK (2009) Drainage density as rainfall induced landslides susceptibility index in small catchment area. International Journal of Landslide Environment 1:27–28

  • Islam ARMT, Saha A, Ghose B et al (2022) Landslide susceptibility modeling in a complex mountainous region of Sikkim Himalaya using new hybrid data mining approach. Geocarto Int 37:9021–9046

    Article 

    Google Scholar
     

  • Jia N, Xie M, Mitani Y et al (2010) A GIS-based spatial data processing system for slope monitoring. Int Geoinf Res Dev J 1:1


    Google Scholar
     

  • Kitutu MG, Muwanga A, Poesen J, Deckers JA (2009) Influence of soil properties on landslide occurrences in Bududa district, Eastern Uganda. Afr J Agric Res 4:611–620


    Google Scholar
     

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article 

    Google Scholar
     

  • Li B, Wang N, Chen J (2021) GIS-based landslide susceptibility mapping using information, frequency ratio, and artificial neural network methods in Qinghai Province, Northwestern China. Adv Civ Eng 2021:1–14. https://doi.org/10.1155/2021/4758062

    Article 

    Google Scholar
     

  • Mallick J, Singh RK, AlAwadh MA et al (2018) GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ Earth Sci 77:1–25. https://doi.org/10.1007/s12665-018-7451-1

    Article 

    Google Scholar
     

  • Mandal K, Saha S, Mandal S (2021) Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci Front 12:101203

    Article 

    Google Scholar
     

  • Merghadi A, Yunus AP, Dou J et al (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev 207:103225. https://doi.org/10.1016/j.earscirev.2020.103225

    Article 

    Google Scholar
     

  • Meten M, Bhandary NP, Yatabe R (2015) GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. J Mt Sci 12:1355–1372

    Article 

    Google Scholar
     

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236

    Article 

    Google Scholar
     

  • Nattino G, Pennell ML, Lemeshow S (2020) Assessing the goodness of fit of logistic regression models in large samples: a modification of the Hosmer-Lemeshow test. Biometrics 76:549–560

    Article 

    Google Scholar
     

  • Onagh M, Kumra VK, Rai PK (2012) Landslide susceptibility mapping in a part of Uttarkashi district (India) by multiple linear regression method. Int J Geol Earth Environ Sci 2:102–120


    Google Scholar
     

  • Peng C-YJ, So T-SH (2002) Logistic regression analysis and reporting: a primer. Understanding Statistics: Statistical Issues in Psychology, Education, and the Social Sciences 1:31–70

    Article 

    Google Scholar
     

  • Pham BT, Jaafari A, Prakash I, Bui DT (2019) A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bull Eng Geol Env 78:2865–2886. https://doi.org/10.1007/s10064-018-1281-y

    Article 

    Google Scholar
     

  • Pourghasemi HR, Pradhan B, Gokceoglu C et al (2013) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci 6:2351–2365

    Article 

    Google Scholar
     

  • Pradhan B, Mansor S, Pirasteh S, Buchroithner MF (2011) Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int J Remote Sens 32:4075–4087

    Article 

    Google Scholar
     

  • Prakash N, Manconi A, Loew S (2021) A new strategy to map landslides with a generalized convolutional neural network. Sci Rep 11:1–15

    Article 

    Google Scholar
     

  • Rai PK, Mohan K, Kumra VK (2014) Landslide hazard and its mapping using remote sensing and GIS. J Sci Res 58:1–13


    Google Scholar
     

  • Rasyid AR, Bhandary NP, Yatabe R (2016) Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron Dis 3:1–16


    Google Scholar
     

  • Rawat A, Kumar D, Chatterjee RS, Kumar H (2022) Reconstruction of liquefaction damage scenario in Northern Bihar during 1934 and 1988 earthquake using geospatial methods. Geomat Nat Haz Risk 13:2560–2578. https://doi.org/10.1080/19475705.2022.2122591

    Article 

    Google Scholar
     

  • Roccati A, Paliaga G, Luino F et al (2021) GIS-based landslide susceptibility mapping for land use planning and risk assessment. Land 10:162

    Article 

    Google Scholar
     

  • Roslee R, Mickey AC, Simon N et al (2017) Landslide susceptibility analysis (LSA) using weighted overlay method (WOM) along the Genting Sempah to Bentong Highway, Pahang. Malays J Geosci (MJG) 1:13–19

    Article 

    Google Scholar
     

  • Roy J, Saha S (2019) Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India. Geoenviron Dis 6:1–18. https://doi.org/10.1186/s40677-019-0126-8

    Article 

    Google Scholar
     

  • Saha A, Pal SC, Santosh M et al (2021a) Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: the present and future scenarios. J Clean Prod 320:128713

    Article 

    Google Scholar
     

  • Saha S, Sarkar R, Roy J et al (2021b) Measuring landslide vulnerability status of Chukha, Bhutan using deep learning algorithms. Sci Rep 11:1–23

    Article 
    CAS 

    Google Scholar
     

  • Saha A, Villuri VGK, Bhardwaj A (2022a) Development and assessment of GIS-based landslide susceptibility mapping models using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India. Land 11:1711. https://doi.org/10.3390/land11101711

    Article 

    Google Scholar
     

  • Saha S, Saha A, Hembram TK et al (2022b) Novel ensemble of deep learning neural network and support vector machine for landslide susceptibility mapping in Tehri region, Garhwal Himalaya. Geocarto Int 37:17018–17043. https://doi.org/10.1080/10106049.2022.2120638

    Article 

    Google Scholar
     

  • Saha A, Villuri VGK, Bhardwaj A, Kumar S (2023b) A multi-criteria decision analysis (MCDA) approach for landslide susceptibility mapping of a part of Darjeeling District in North-East Himalaya, India. Appl Sci 13:5062. https://doi.org/10.3390/app13085062

    Article 
    CAS 

    Google Scholar
     

  • Saha A, Villuri VGK, Bhardwaj A (2020) Assessment and preparation of landslide susceptibility zonation map by geospatial method using remote sensing and GIS. In: ACRS 2020 – 41st Asian Conference on Remote Sensing. pp. 461–470

  • Saha A, Villuri VGK, Bhardwaj A (2023a) Development and assessment of a novel hybrid machine learning-based landslide susceptibility mapping model in the Darjeeling Himalayas. Stoch Environ Res Risk Assess 8. https://doi.org/10.1007/s00477-023-02528-8

  • Sarkar S, Kanungo D, Patra A, Kumar P (2006) Disaster mitigation of debris flows, slope failures and landslides. GIS based landslide susceptibility mapping-a case study in Indian Himalaya. Universal Academy Press, Niigate, Japan

  • Selamat SN, Majid NA, Taha MR, Osman A (2022) Landslide susceptibility model using artificial neural network (ANN) Approach in Langat River Basin, Selangor. Malaysia Land 11:833. https://doi.org/10.3390/land11060833

    Article 

    Google Scholar
     

  • Shano L, Raghuvanshi TK, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques–a review. Geoenviron Dis 7:1–19


    Google Scholar
     

  • Tsangaratos P, Ilia I, Hong H et al (2017) Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides 14:1091–1111. https://doi.org/10.1007/s10346-016-0769-4

    Article 

    Google Scholar
     

  • van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation – why is it still so difficult? Bull Eng Geol Env 65:167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article 

    Google Scholar
     

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article 

    Google Scholar
     

  • Wang H, Zhang L, Yin K et al (2020) Landslide identification using machine learning. Geosci Front. https://doi.org/10.1016/j.gsf.2020.02.012

    Article 

    Google Scholar
     

  • Whiteley JS, Chambers JE, Uhlemann S et al (2019) Geophysical monitoring of moisture-induced landslides: a review. Rev Geophys 57:106–145

    Article 

    Google Scholar
     

  • Wubalem A (2021) Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenviron Dis 8:1. https://doi.org/10.1186/s40677-020-00170-y

    Article 

    Google Scholar
     

  • Wubalem A, Meten M (2020) Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Appl Sci 2:1–19

    Article 

    Google Scholar
     

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287

    Article 

    Google Scholar
     

  • Zhang S, Bai L, Li Y et al (2022) Comparing convolutional neural network and machine learning models in landslide susceptibility mapping : a case study in Wenchuan County. 10:1–12.  https://doi.org/10.3389/fenvs.2022.886841



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *